953 resultados para 802.11


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents techniques used to design and manufacture microstrip patch antennas for applications in portable and mobile devices. To do so, are evaluated several factors that can influence the performance of microstrip patch antennas. Miniaturization techniques are studied and employed in order to apply this type of antenna in mobile and / or mobile. The theories of microstrip patch antennas are addressed by analyzing characteristics such as constitution, kinds of patches, substrates, feeding methods, analysis methods, the main advantages and disadvantages and others. Techniques for obtaining broadband microstrip patch antennas were surveyed in literature and exemplified mainly by means of simulations and measurements. For simulations of the antennas was used the commercial software . In addition, antenna miniaturization techniques have been studied as a main concern the fundamental limits of antennas with special attention to electrically small antennas because they are directly linked to the microstrip patch antennas. Five design antennas are proposed to demonstrate the effectiveness of techniques used to obtain the microstrip patch antennas broadband and miniaturized for use in mobile devices and/or portable. For this, the proposed antennas were simulated, built and measured. The antennas are proposed to be used in modern systems of wireless communications such as DTV, GPS, IEEE 802.16, IEEE 802.11, etc. The simulations of the antennas were made in business and computer programs. The measured results were obtained with a parser Vector of networks of the Rhode and Schwarz model ZVB 14

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a theoretical and experimental analysis about the properties of microstrip antennas with integrated frequency selective surfaces (Frequency Selective Surface - FSS). The integration occurs through the insertion of the FSS on ground plane of microstrip patch antenna. This integration aims to improve some characteristics of the antennas. The FSS using patch-type elements in square unit cells. Specifically, the simulated results are obtained using the commercial computer program CST Studio Suite® version 2011. From a standard antenna, designed to operate in wireless communication systems of IEEE 802.11 a / b / g / n the dimensions of the FSS are varied to obtain an optimization of some antenna parameters such as impedance matching and selectivity in the operating bands. After optimization of the investigated parameters are built two prototypes of microstrip patch antennas with and without the FSS ground plane. Comparisons are made of the results with the experimental results by 14 ZVB network analyzer from Rohde & Schwarz ®. The comparison aims to validate the simulations performed and show the improvements obtained with the FSS in integrated ground plane antenna. In the construction of prototypes, we used dielectric substrates of the type of Rogers Corporation RT-3060 with relative permittivity equal to 10.2 and low loss tangent. Suggestions for continued work are presented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Frequency selective surfaces (Frequency Selective Surface - FSS) are often used in various applications in telecommunications. Some of these applications may require that these structures have response with multiple resonance bands. Other applications require that the FSS response have large frequency range, to meet the necessary requirements. FSS to design with these features there are numerous techniques cited in the scientific literature. Thus, the purpose of this paper is to examine some common techniques such as: Overlap of FSS; Elements combined; Elements Elements convolucionados and fractals. And designing multiband FSS and / or broadband selecting simple ways in terms of construction and occupy the smallest possible space, aiming at practical applications. Given these requirements, three projects FSS were performed: a technology applied to IEEE 802.11 a/b/g/n and two projects for application in UWB. In project development, commercial software Ansoft DesignerTM and experimental results were satisfactory was used

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the constantly increasing use of wireless networks in domestic, business and industrial environments, new challenges have emerged. The prototyping of new protocols in these environments is typically restricted to simulation environments, where there is the need of double implementation, one in the simulation environment where an initial proof of concept is performed and the other one in a real environment. Also, if real environments are used, it is not trivial to create a testbed for high density wireless networks given the need to use various real equipment as well as attenuators and power reducers to try to reduce the physical space required to create these laboratories. In this context, LVWNet (Linux Virtual Wireless Network) project was originally designed to create completely virtual testbeds for IEEE 802.11 networks on the Linux operating system. This paper aims to extend the current project LVWNet, adding to it the features like the ability to interact with real wireless hardware, provides a initial mobility ability using the positioning of the nodes in a space coordinates environment based on meters, with loss calculations due to attenuation in free space, enables some scalability increase by creating an own protocol that allows the communication between nodes without an intermediate host and dynamic registration of nodes, allowing new nodes to be inserted into in already in operation network

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As Redes da Próxima Geração consistem no desenvolvimento de arquiteturas que viabilizem a continuidade de serviços que proporcionem sempre a melhor conectividade (Always Best Connectivity - ABC) aos usuários móveis com suporte adequado à Qualidade de Experiência (QoE) para aplicações multimídia de alta definição, nesse novo contexto as arquiteturas têm perspectiva orientada a serviços e não a protocolos. Esta tese apresenta uma arquitetura para redes da próxima geração capaz de fornecer acesso heterogêneo sem fio e handover vertical transparente para as aplicações multimídia. A tese considera diferentes tecnologias sem fio e também adota o padrão IEEE 802.21 (Media Independent Handover – MIH) para auxiliar na integração e gerenciamento das redes heterogêneas sem fio. As tecnologias que a arquitetura possui são: IEEE 802.11 (popularmente denominada de WiFi), IEEE 802.16 (popularmente denominada de WiMAX) e LTE (popularmente denominada de redes 4G). O objetivo é que arquitetura tenha a capacidade de escolher entre as alternativas disponíveis a melhor conexão para o momento. A arquitetura proposta apresenta mecanismos de predição de Qualidade de Experiência (Quality of Experience - QoE) que será o parâmetro decisivo para a realização ou não do handover para uma nova rede. A predição para determinar se haverá ou não mudança de conectividade será feita com o uso da inteligência computacional de Redes Neurais Artificiais. Além disso a arquitetura também apresenta um mecanismo de descarte seletivo de pacotes especifico para aplicações multimídia. A proposta é avaliada via simulação utilizando-se o ns-2 (Network Simulator) e os resultados de desempenho são apresentados através das métricas de QoS, de QoE e também visualmente através da exibição de frames dos vídeos transmitidos na arquitetura.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unlike traditional wireless networks, characterized by the presence of last-mile, static and reliable infrastructures, Mobile ad Hoc Networks (MANETs) are dynamically formed by collections of mobile and static terminals that exchange data by enabling each other's communication. Supporting multi-hop communication in a MANET is a challenging research area because it requires cooperation between different protocol layers (MAC, routing, transport). In particular, MAC and routing protocols could be considered mutually cooperative protocol layers. When a route is established, the exposed and hidden terminal problems at MAC layer may decrease the end-to-end performance proportionally with the length of each route. Conversely, the contention at MAC layer may cause a routing protocol to respond by initiating new routes queries and routing table updates. Multi-hop communication may also benefit the presence of pseudo-centralized virtual infrastructures obtained by grouping nodes into clusters. Clustering structures may facilitate the spatial reuse of resources by increasing the system capacity: at the same time, the clustering hierarchy may be used to coordinate transmissions events inside the network and to support intra-cluster routing schemes. Again, MAC and clustering protocols could be considered mutually cooperative protocol layers: the clustering scheme could support MAC layer coordination among nodes, by shifting the distributed MAC paradigm towards a pseudo-centralized MAC paradigm. On the other hand, the system benefits of the clustering scheme could be emphasized by the pseudo-centralized MAC layer with the support for differentiated access priorities and controlled contention. In this thesis, we propose cross-layer solutions involving joint design of MAC, clustering and routing protocols in MANETs. As main contribution, we study and analyze the integration of MAC and clustering schemes to support multi-hop communication in large-scale ad hoc networks. A novel clustering protocol, named Availability Clustering (AC), is defined under general nodes' heterogeneity assumptions in terms of connectivity, available energy and relative mobility. On this basis, we design and analyze a distributed and adaptive MAC protocol, named Differentiated Distributed Coordination Function (DDCF), whose focus is to implement adaptive access differentiation based on the node roles, which have been assigned by the upper-layer's clustering scheme. We extensively simulate the proposed clustering scheme by showing its effectiveness in dominating the network dynamics, under some stressing mobility models and different mobility rates. Based on these results, we propose a possible application of the cross-layer MAC+Clustering scheme to support the fast propagation of alert messages in a vehicular environment. At the same time, we investigate the integration of MAC and routing protocols in large scale multi-hop ad-hoc networks. A novel multipath routing scheme is proposed, by extending the AOMDV protocol with a novel load-balancing approach to concurrently distribute the traffic among the multiple paths. We also study the composition effect of a IEEE 802.11-based enhanced MAC forwarding mechanism called Fast Forward (FF), used to reduce the effects of self-contention among frames at the MAC layer. The protocol framework is modelled and extensively simulated for a large set of metrics and scenarios. For both the schemes, the simulation results reveal the benefits of the cross-layer MAC+routing and MAC+clustering approaches over single-layer solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Programa de doctorado: Tecnologías de las Telecomunicaciones (bienio 98/00). La fecha de publicación es la fecha de lectura

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The last decades have seen an unrivaled growth and diffusion of mobile telecommunications. Several standards have been developed to this purposes, from GSM mobile phone communications to WLAN IEEE 802.11, providing different services for the the transmission of signals ranging from voice to high data rate digital communications and Digital Video Broadcasting (DVB). In this wide research and market field, this thesis focuses on Ultra Wideband (UWB) communications, an emerging technology for providing very high data rate transmissions over very short distances. In particular the presented research deals with the circuit design of enabling blocks for MB-OFDM UWB CMOS single-chip transceivers, namely the frequency synthesizer and the transmission mixer and power amplifier. First we discuss three different models for the simulation of chargepump phase-locked loops, namely the continuous time s-domain and discrete time z-domain approximations and the exact semi-analytical time-domain model. The limitations of the two approximated models are analyzed in terms of error in the computed settling time as a function of loop parameters, deriving practical conditions under which the different models are reliable for fast settling PLLs up to fourth order. Besides, a phase noise analysis method based upon the time-domain model is introduced and compared to the results obtained by means of the s-domain model. We compare the three models over the simulation of a fast switching PLL to be integrated in a frequency synthesizer for WiMedia MB-OFDM UWB systems. In the second part, the theoretical analysis is applied to the design of a 60mW 3.4 to 9.2GHz 12 Bands frequency synthesizer for MB-OFDM UWB based on two wide-band PLLs. The design is presented and discussed up to layout level. A test chip has been implemented in TSMC CMOS 90nm technology, measured data is provided. The functionality of the circuit is proved and specifications are met with state-of-the-art area occupation and power consumption. The last part of the thesis deals with the design of a transmission mixer and a power amplifier for MB-OFDM UWB band group 1. The design has been carried on up to layout level in ST Microlectronics 65nm CMOS technology. Main characteristics of the systems are the wideband behavior (1.6 GHz of bandwidth) and the constant behavior over process parameters, temperature and supply voltage thanks to the design of dedicated adaptive biasing circuits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Per dare supporto al traffico multimediale in una rete totalmente distribuita come le reti ad-hoc, il protocollo MAC deve fornire garanzie di QoS. L'IEEE ha sviluppato un standard per supportare le QoS chiamato 802.11e, facente parte della famiglia 802.11. Per dare supporto al QoS viene proposto un nuovo protocollo chiamato PAB che consiste in un accesso al canale preceduto da una serie di invii di burst, inviati alla stessa frequenza dei dati, che inibiscono la trasmissione di stazioni avente minore priorità. Lo scopo di questo protocollo è fornire servizi QoS, evitare starvation e fornire un accesso equo tra le stazioni.