974 resultados para 5-nitrosalicylic acid
Resumo:
The effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on the central nervous system (CNS) were studied in rats. Behavioural and neurochemical studies were performed. Results show that acute and oral administration of dimethylamine 2,4-D was able to decrease locomotion and rearing frequencies and to increase immobility duration of rats observed in an open-field test. Treatment of rats with p-chlorophenylalanine (PCPA) was unable to change rat's open-field behaviour; 5-hydroxytryptophan (5-HTP) administration not only increased locomotion and rearing frequences but also decreased immobility duration. Pretreatment of the rats with PCPA and 5-HTP decreased and increased dimethylamine 2,4-D effects, respectively. The herbicide was not able to change the striatal levels of dopamine and homovanilic acid but decreased the striatal levels of serotonin (5-HT), as observed for the doses of 100 and 200 mg/kg and increased those of 5-hydroxyindoleacetic acid (5-HIAA) as measured after the 200 mg/kg dose treatment. When the levels of serotonin and 5-HIAA were measured at the brain stem level, only those of 5-HIAA were modified, being increased by diethylamine 2,4-D (60; 100 and 200 mg/kg); this increment on 5-HIAA levels was observed even 1 hr after pesticide administration. Further analysis showed that 2,4-D concentrations chromatographycally detected both in serum and brain of the intoxicated animals were dose-dependent, being found as early as 1 hr after the smaller dose of the herbicide used (10 mg/kg). The results suggest that diethylamine 2,4-D modify 5-HT functional activity within the CNS. Thus, the effects of the herbicide on open-field behaviour of rats could be attributed to a direct or indirect pesticide action on serotoninergic systems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The 5-aminosalicylic acid is usually prepared: 1. by the reduction of the azodye from diazotized aniline and salicylic acid and the posterior reduction of the formed compound; 2. for carboxylation with carbon dioxide under high pressure of p-aminophenol. Both do not present high yield, but the carboxylation process of p-aminophenol can easily be used and can reduce the obtainment process of 3 steps to only 2. Another advantage of this process is the fact that the product is produced without contaminants, because only one solid reagent (p-aminophenol) and the agent of carboxylation (CO2) is used.
Resumo:
Lanthanide compounds of general formula [Ln2(2,5-tdc) 3(dmf)2(H2O)2] ·2dmf·H2O (Ln = Eu(III) (1), Tb(III) (2), Gd(III) (3) and Dy(III) (4), dmf = N,N′-dimethylformamide and 2,5-tdc2- = 2,5-thiophedicarboxylate anion) were synthesized and characterized by elemental analysis, X-ray powder diffraction patterns, thermogravimetric analysis and infrared spectroscopy. Phosphorescence data of Gd(III) complex showed that the triplet states (T1) of 2,5-tdc2- ligand have higher energy than the main emitting states of Eu(III), Tb(III) and Dy(III), indicating that 2,5-tdc2- ligand can act as intramolecular energy donor for these metal ions. An energy level diagram was used to establish the most relevant channels involved in the ligand-to-metal energy transfer. The high value of experimental intensity parameter Ω2 for the Eu(III) complex indicate that the europium ion is in a highly polarizable chemical environment. The emission quantum efficiency (η) of the 5D0 emitting level of Eu(III) was also determined. The complexes act as possible light conversion molecular devices (LCMDs). © 2013 Elsevier B.V. All rights reserved.
Resumo:
The novel coordination polymer with the formula {[Nd2(2,5-tdc)3(dmf)2(H2O)2].dmf.H2O}n (2,5-tdc2-=2,5-thiophedicarboxylate anion and dmf=dimethylformamide) has been synthesized and characterized by thermal analysis (TG/DTA), vibrational spectroscopy (FTIR) and single crystal X-ray diffraction analysis (XRD). Structure analysis reveals that Nd(III) ions show dicapped trigonal prism coordination geometry. The 2,5-tdc2- ligands connect four Nd(III) centers, adopting (κ1 - κ1) - (κ1 - κ1) - μ4 coordination mode, generating an interesting 6-connected uninodal 3D network. Photophysical properties were studied using diffuse reflectance spectroscopy (DR) and excitation/emission spectra. The photoluminescence data show the near infrared emission (NIR) with the characteristic 4F3/2→4IJ (J=9/2, 11/2 and 13/2) transitions of Nd(III) ion, indicating that 2,5-tdc2- is able to act as a sensitizer for emission in NIR region. © 2013 Elsevier B.V.
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two novel coordination polymers with the formula {[Ln(2)(2,5-tdc)(3)(dmso)(2)].H2O}(n) (Ln = Tb(III) for (1) and Dy(III) for (2)), (2,5-tdc(2-) = 2,5-thiophenedicarboxylate and dmso = dimethylsulfoxide) have been synthesized by the diffusion method and characterized by thermal analysis, vibrational spectroscopy and single crystal X-ray diffraction analysis. Structure analysis reveals that 2,5-tdc(2-) play a versatile role toward different lanthanide ions to form three-dimensional metal-organic frameworks (MOFs) in which the lanthanides ions are heptacoordinated. Photophysical properties were studied using excitation and emission spectra, where the photoluminescence data show the high emission intensity of the characteristic transitions D-5(4 ->) F-7(J) (J= 6, 5, 4 and 3) for (1) and (F9/2 -> HJ)-F-4-H-6 (J = 15/2, 13/2 and 11/2) for (2), indicating that 2,5-tdc(2-) is a good sensitizer. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work deals with the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using metal supported catalysts. Catalysts were prepared from the immobilisation of preformed monometallic (Au, Pd) and bimetallic (AuCu, AuPd) nanoparticles on commercial oxides (TiO2, CeO2). Au-TiO2 catalyst was found to be very active for HMF oxidation; however, this system deactivated very fast. For this reason, we prepared bimetallic gold-copper nanoparticles and an increase in the catalytic activity was observed together with an increase in catalyst stability. In order to optimise the interaction of the metal active phase with the support, Au and AuCu nanoparticles were supported onto CeO2. Au-CeO2 catalyst was found to be more active than the bimetallic one, leading to the conclusion that in this case the most important feature is the interaction between gold and the support. Catalyst pre-treatments (calcination and washing) were carried out to maximise the contact between the metal and the oxide and an increase in the FDCA production could be observed. The presence of ceria defective sites was crucial for FDCA formation. Mesoporous cerium oxide was synthesised with the hard template method and was used as support for Au nanoparticles to promote the catalytic activity. In order to study the role of active phase in HMF oxidation, PdAu nanoparticles were supported onto TiO2. Au and Pd monometallic catalysts were very active in the formation of HMFCA (5-hydroxymethyl-2-furan carboxylic acid), but Pd was not able to convert it, leading to a low FDCA yield. The calcination of PdAu catalysts led to Pd segregation on the particles surface, which changed the reaction pathway and included an important contribution of the Cannizzaro reaction. PVP protected PdAu nanoparticles, synthesised with different morphologies (core-shell and alloyed structure), confirmed the presence of a different reaction mechanism when the metal surface composition changes.
Resumo:
UV filters belong to a group of compounds that are used by humans and are present in municipal waste-waters, effluents from sewage treatment plants and surface waters. Current information regarding UV filters and their effects on fish is limited. In this study, the occurrence of three commonly used UV filters - 2-phenylbenzimidazole-5-sulfonic acid (PBSA), 2-hydroxy-4-methoxybenzophenone (benzophenone-3, BP-3) and 5-benzoyl-4-hydroxy-2-methoxy-benzenesulfonic acid (benzophenone-4, BP-4) - in South Bohemia (Czech Republic) surface waters is presented. PBSA concentrations (up to 13μgL(-1)) were significantly greater than BP-3 or BP-4 concentrations (up to 620 and 390ngL(-1), respectively). On the basis of these results, PBSA was selected for use in a toxicity test utilizing the common model organism rainbow trout (Oncorhynchus mykiss). Fish were exposed to three concentrations of PBSA (1, 10 and 1000µgL(-1)) for 21 and 42 days. The PBSA concentrations in the fish plasma, liver and kidneys were elevated after 21 and 42 days of exposure. PBSA increased activity of certain P450 cytochromes. Exposure to PBSA also changed various biochemical parameters and enzyme activities in the fish plasma. However, no pathological changes were obvious in the liver or gonads.
Resumo:
BACKGROUND The technique of 5-aminolevulinic acid (5-ALA) tumor fluorescence is increasingly used to improve visualization of tumor tissue and thereby to increase the rate of patients with gross total resections. In this study, we measured the resection volumes in patients who underwent 5-ALA-guided surgery for non-eloquent glioblastoma and compared them with the preoperative tumor volume. METHODS We selected 13 patients who had received a complete resection according to intraoperative 5-ALA induced fluorescence and CRET according to post-operative T1 contrast-enhanced MRI. The volumes of pre-operative contrast enhancing tissue, post-operative resection cavity and resected tissue were determined through shift-corrected volumetric analysis. RESULTS The mean resection cavity (29 cm(3)) was marginally smaller than the pre-operative contrast-enhancing tumor (39 cm(3), p = 0.32). However, the mean overall resection volume (84 cm(3)) was significantly larger than the pre-operative contrast-enhancing tumor (39 cm(3), p = 0.0087). This yields a mean volume of resected 5-ALA positive, but radiological non-enhancing tissue of 45 cm(3). The mean calculated rim of resected tissue surpassed pre-operative tumor diameter by 6 mm (range 0-10 mm). CONCLUSIONS Results of the current study imply that (i) the resection cavity underestimates the volume of resected tissue and (ii) 5-ALA complete resections go significantly beyond the volume of pre-operative contrast-enhancing tumor bulk on MRI, indicating that 5-ALA also stains MRI non-enhancing tumor tissue. Use of 5-ALA may thus enable extension of coalescent tumor resection beyond radiologically evident tumor. The impact of this more extended resection method on time to progression and overall survival has not been determined, and potentially puts adjacent and functionally intact tissue at risk.
Resumo:
OBJECT Resection of glioblastoma adjacent to motor cortex or subcortical motor pathways carries a high risk of both incomplete resection and postoperative motor deficits. Although the strategy of maximum safe resection is widely accepted, the rates of complete resection of enhancing tumor (CRET) and the exact causes for motor deficits (mechanical vs vascular) are not always known. The authors report the results of their concept of combining monopolar mapping and 5-aminolevulinic acid (5-ALA)-guided surgery in patients with glioblastoma adjacent to eloquent tissue. METHODS The authors prospectively studied 72 consecutive patients who underwent 5-ALA-guided surgery for a glioblastoma adjacent to the corticospinal tract (CST; < 10 mm) with continuous dynamic monopolar motor mapping (short-train interstimulus interval 4.0 msec, pulse duration 500 μsec) coupled to an acoustic motor evoked potential (MEP) alarm. The extent of resection was determined based on early (< 48 hours) postoperative MRI findings. Motor function was assessed 1 day after surgery, at discharge, and at 3 months. RESULTS Five patients were excluded because of nonadherence to protocol; thus, 67 patients were evaluated. The lowest motor threshold reached during individual surgery was as follows (motor threshold, number of patients): > 20 mA, n = 8; 11-20 mA, n = 13; 6-10 mA, n = 10; 4-5 mA, n = 13; and 1-3 mA, n = 23. Motor deterioration at postsurgical Day 1 and at discharge occurred in 30% (n = 20) and 10% (n = 7) of patients, respectively. At 3 months, 3 patients (4%) had a persisting postoperative motor deficit, 2 caused by vascular injury and 1 by mechanical injury. The rates of intra- and postoperative seizures were 1% and 0%, respectively. Complete resection of enhancing tumor was achieved in 73% of patients (49/67) despite proximity to the CST. CONCLUSIONS A rather high rate of CRET can be achieved in glioblastomas in motor eloquent areas via a combination of 5-ALA for tumor identification and intraoperative mapping for distinguishing between presumed and actual motor eloquent tissues. Continuous dynamic mapping was found to be a very ergonomic technique that localizes the motor tissue early and reliably.
Resumo:
Diets high in fat are associated with an increased risk of prostate cancer, although the molecular mechanism is still unknown. We have previously reported that arachidonic acid, an omega-6 fatty acid common in the Western diet, stimulates proliferation of prostate cancer cells through production of the 5-lipoxygenase metabolite, 5-HETE (5-hydroxyeicosatetraenoic acid). We now show that 5-HETE is also a potent survival factor for human prostate cancer cells. These cells constitutively produce 5-HETE in serum-free medium with no added stimulus. Exogenous arachidonate markedly increases the production of 5-HETE. Inhibition of 5-lipoxygenase by MK886 completely blocks 5-HETE production and induces massive apoptosis in both hormone-responsive (LNCaP) and -nonresponsive (PC3) human prostate cancer cells. This cell death is very rapid: cells treated with MK886 showed mitochondrial permeability transition between 30 and 60 min, externalization of phosphatidylserine within 2 hr, and degradation of DNA to nucleosomal subunits beginning within 2–4 hr posttreatment. Cell death was effectively blocked by the thiol antioxidant, N-acetyl-l-cysteine, but not by androgen, a powerful survival factor for prostate cancer cells. Apoptosis was specific for 5-lipoxygenase—programmed cell death was not observed with inhibitors of 12-lipoxygenase, cyclooxygenase, or cytochrome P450 pathways of arachidonic acid metabolism. Exogenous 5-HETE protects these cells from apoptosis induced by 5-lipoxygenase inhibitors, confirming a critical role of 5-lipoxygenase activity in the survival of these cells. These findings provide a possible molecular mechanism by which dietary fat may influence the progression of prostate cancer.
Resumo:
We evaluated lignin profiles and pulping performances of 2-year-old transgenic poplar (Populus tremula × Populus alba) lines severely altered in the expression of caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT) or cinnamyl alcohol dehydrogenase (CAD). Transgenic poplars with CAD or COMT antisense constructs showed growth similar to control trees. CAD down-regulated poplars displayed a red coloration mainly in the outer xylem. A 90% lower COMT activity did not change lignin content but dramatically increased the frequency of guaiacyl units and resistant biphenyl linkages in lignin. This alteration severely lowered the efficiency of kraft pulping. The Klason lignin level of CAD-transformed poplars was slightly lower than that of the control. Whereas CAD down-regulation did not change the frequency of labile ether bonds or guaiacyl units in lignin, it increased the proportion of syringaldehyde and diarylpropane structures and, more importantly with regard to kraft pulping, of free phenolic groups in lignin. In the most depressed line, ASCAD21, a substantially higher content in free phenolic units facilitated lignin solubilization and fragmentation during kraft pulping. These results point the way to genetic modification of lignin structure to improve wood quality for the pulp industry.
Resumo:
To understand the regulation and expression of pyrimidine biosynthesis in plants, we have examined the effect of the metabolic inhibitor 5-fluoroorotic acid (FOA) on uridine-5′-monophosphate synthase (UMPSase) expression in cell cultures of Nicotiana plumbaginifolia. UMPSase is the rate-limiting step of pyrimidine biosynthesis in plants. Addition of FOA causes an up-regulation of UMPSase enzyme activity in cell cultures after a lag phase of several days. Western-blot analysis demonstrated that the up-regulation in enzyme activity was caused by increased expression of the UMPSase protein. Northern-blot analysis demonstrated a higher level of UMPSase mRNA in the FOA-induced tissues than in control tissues. Run-on transcriptional assays showed that the UMPSase gene was transcriptionally activated after FOA treatment. The mechanism of toxicity of FOA is through thymine starvation. We found that addition of thymine abrogated the FOA-mediated up-regulation of UMPSase. In addition, methotrexate and aminopterin, which affect thymine levels by inhibiting dihydrofolate reductase, also up-regulate UMPSase in N. plumbaginifolia cells.