1000 resultados para 270899 Biotechnology not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to demonstrate at pilot scale a high level of energy recovery from sewage utilising a primary Anaerobic Migrating Bed Reactor (AMBR) operating at ambient temperature to convert COD to methane. The focus is the reduction in non-renewable CO2 emissions resulting from reduced energy requirements for sewage treatment. A pilot AMBR was operated on screened sewage over the period June 2003 to September 2004. The study was divided into two experimental phases. In Phase 1 the process operated at a feed rate of 10 L/h (HRT 50 h), SRT 63 days, average temperature 28 degrees C and mixing time fraction 0.05. In Phase 2 the operating parameters were 20 L/h, 26 days, 16 degrees C and 0.025. Methane production was 66% of total sewage COD in Phase 1 and 23% in Phase 2. Gas mixing of the reactor provided micro-aeration which suppressed sulphide production. Intermittent gas mixing at a useful power input of 6 W/m(3) provided satisfactory process performance in both phases. Energy consumption for mixing was about 1.5% of the energy conversion to methane in both operating phases. Comparative analysis with previously published data confirmed that methane supersaturation resulted in significant losses of methane in the effluent of anaerobic treatment systems. No cases have been reported where methane was considered to be supersaturated in the effluent. We have shown that methane supersaturation is likely to be significant and that methane losses in the effluent are likely to have been greater than previously predicted. Dissolved methane concentrations were measured at up to 2.2 times the saturation concentration relative to the mixing gas composition. However, this study has also demonstrated that despite methane supersaturation occurring, microaeration can result in significantly lower losses of methane in the effluent (< 11% in this study), and has demonstrated that anaerobic sewage treatment can genuinely provide energy recovery. The goal of demonstrating a high level of energy recovery in an ambient anaerobic bioreactor was achieved. An AMBR operating at ambient temperature can achieve up to 70% conversion of sewage COD to methane, depending on SRT and temperature. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alpha-fetoprotein (AFP) is a commercially important polypeptide with important diagnostic. physiological and immunomodulatory functions. Previous studies into the refolding of this macromolecule are contradictory. and variously suggest that AFP denaturation may be irreversible or that refolding may be achieved by reducing denaturant concentration through dilution but not dialysis. Importantly, these same previous studies do not provide quantitative metrics by which the Success of refolding, and the potential for bioprocess development. can be assessed. Moreover, these same studies do not optimize and control refolding redox potential - an important factor considering that AFP contains 32 cysteines which form 16 disulfide bonds. In this current study, a quantitative comparison of recombinant human AFP (rhAFP) refolding by dilution and dialysis is conducted under optimized redox conditions. rhAFP refolding yields were > 35% (dialysis refolding) and > 75% (dilution refolding) as assessed by RP-HPLC and ELISA, with structural Similarity to the native state confirmed by UV spectroscopy. Dialysis refolding yield was believed to be lower because the gradual reduction in denaturant concentration allowed extended conformational searching. enabling more time for undesirable interaction with other protein molecules and/or the dialysis membrane, leading to a Sub-optimal process outcome. Significant yield sensitivity to redox environment was also observed, emphasizing the importance of physicochemical optimization. This study demonstrates that very high refolding yields can be obtained, for a physiologically relevant protein, with optimized dilution refolding. The study also highlights the quantitative metrics and macromolecular physical spectroscopic 'fingerprints' required to facilitate transition from laboratory to process scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzymatically active Delta(5)-3-ketosteroid isomerase (KSI) protein with a C-terminus his(6)-tag was produced following insoluble expression using Escherichia coli. A simple, integrated process was used to extract and purify the target protein. Chemical extraction was shown to be as effective as homogenization at releasing the inclusion body proteins from the bacteria] cells, with complete release taking less than 20 min. An expanded bed adsorption (EBA) column utilizing immobilized metal affinity chromatography (IMAC) was then used to purify the denatured KSI-(His(6)) protein directly from the chemical extract. This integrated process greatly simplifies the recovery and purification of inclusion body proteins by removing the need for mechanical cell disruption, repeated inclusion body centrifugation, and difficult clarification operations. The integrated chemical extraction and EBA process achieved a very high purity (99%) and recovery (89%) of the KSI-(His(6)), with efficient utilization of the adsorbent matrix (9.74 mg KSI-(His(6))/mL adsorbent). Following purification the protein was refolded by dilution to obtain the biologically active protein. Seventy-nine percent of the expressed KSI-(His(6)) protein was recovered as enzymatically active protein with the described extraction, purification, and refolding process. In addition to demonstrating the operation of this intensified inclusion body process, a plate-based concentration assay detecting KSI-(His(6)) is validated. The intensified process in this work requires minimal optimization for recovering novel his-tagged proteins, and further improves the economic advantage of E. coli as a host organism. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time control programs are often used in contexts where (conceptually) they run forever. Repetitions within such programs (or their specifications) may either (i) be guaranteed to terminate, (ii) be guaranteed to never terminate (loop forever), or (iii) may possibly terminate. In dealing with real-time programs and their specifications, we need to be able to represent these possibilities, and define suitable refinement orderings. A refinement ordering based on Dijkstra's weakest precondition only copes with the first alternative. Weakest liberal preconditions allow one to constrain behaviour provided the program terminates, which copes with the third alternative to some extent. However, neither of these handles the case when a program does not terminate. To handle this case a refinement ordering based on relational semantics can be used. In this paper we explore these issues and the definition of loops for real-time programs as well as corresponding refinement laws.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant advances have been made in the last decade to quantify the process of wet granulation. The attributes of product granules from the granulation process are controlled by a combination of three groups of processes occurring in the granulator: (1) wetting and nucleation, (2) growth and consolidation and (3) breakage and attrition. For the first two of these processes, the key controlling dimensionless groups are defined and regime maps are presented and validated with data from tumbling and mixer granulators. Granulation is an example of particle design. For quantitative analysis, both careful characterisation of the feed formulation and knowledge of operating parameters are required. A key thesis of this paper is that the design, scaleup and operation of granulation processes can now be considered as quantitative engineering rather than a black art. Résumé

Relevância:

100.00% 100.00%

Publicador: