941 resultados para 270700 Ecology and Evolution
Resumo:
Eggs from the Heron Island, Great Barrier Reef, nesting population of green turtles (Chelonia mydas) were incubated at all-male-determining (26 degreesC) and all-female-determining (30 degreesC) temperatures. Oxygen consumption and embryonic growth were monitored throughout incubation, and hatchling masses and body dimensions were measured from both temperatures. Eggs hatched after 79 and 53 days incubation at 26 degreesC and 30 degreesC respectively. Oxygen consumption at both temperatures increased to a peak several days before hatching, a pattern typical of turtle embryos, and the rate of oxygen was higher at 30 degreesC than 26 degreesC. The total amount of energy consumed during incubation, and hatchling dimensions, were similar at both temperatures, but hatchlings from 26 degreesC had larger mass, larger yolk-free mass and smaller residual yolks than hatchlings from 30 degreesC. Because of the difference in mass of hatchlings, hatchlings from 30 degreesC had a higher production cost.
Resumo:
Patterns of association of digenean families and their mollusc and vertebrate hosts are assessed by way of a new database containing information on over 1000 species of digeneans for lift-cycles and over 5000 species from fishes. Analysis of the distribution of digenean families in molluscs suggests that the group was associated primitively with gastropods and that infection of polychaetes, bivalves and scaphopods are all the results of host-switching. For the vertebrates. infections of agnathans and chondrichthyans are apparently the result of host-switching from teleosts. For digenean families the ratio of orders of fishes infected to superfamilies of molluscs infected ranges from 0.5 (Mesometridae) to 16 (Bivesiculidae) and has a mean of 5.6. Individual patterns of host association of 13 dipenean families and superfamilies are reviewed. Two, Bucephalidae and Sanguinicolidae. are exceptional in infecting a range of first intermediate hosts qualitatively as broad as their range of definitive hosts. No well-studied taxon shows narrower association with vertebrate than with mollusc clades. The range of definitive hosts of digeneans is characteristically defined by eco-physiological similarity rather than phylogenetic relationship. The range of associations of digenean families with mollusc taxa is generally much narrower. These data are considered in the light of ideas about the significance of different forms of host association. If Manter's Second Rule (the longer the association with a host group, the mure pronounced the specificity exhibited by the parasite group) is invoked, then the data may suggest that the Digenea first parasitised molluscs before adopting vertebrate hosts. This interpretation is consistent with most previous ideas about the evolution of the Digenea but contrary to current interpretations based on the monophyly of the Neodermata. The basis of Manter's Second Rule is. however, considered too flimsy for this interpretation to be robust. Problems of the inference of the evolution of patterns of parasitism in the Neodermata al-e discussed and considered so intractable that the truth may be presently unknowable. (C) 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
In many species, females display preferences for extreme male signal traits, but it has not been determined if such preferences evolve as a consequence of females gaining genetic benefits from exercising choice. If females prefer extreme male traits because they indicate male genetic quality that will enhance the fitness of offspring, a genetic correlation will evolve between female preference genes and genes that confer offspring fitness. We show that females of Drosophila serrata prefer extreme male cuticular hydrocarbon (CHC) blends, and that this preference affects offspring fitness. Female preference is positively genetically correlated with offspring fitness, indicating that females have gained genetic benefits from their choice of males. Despite male CHCs experiencing strong sexual selection, the genes underlying attractive CHCs also conferred lower offspring fitness, suggesting a balance between sexual selection and natural selection may have been reached in this population.
Resumo:
Theory predicts that in small isolated populations random genetic drift can lead to phenotypic divergence; however this prediction has rarely been tested quantitatively in natural populations. Here we utilize natural repeated island colonization events by members of the avian species complex, Zosterops lateralis, to assess whether or not genetic drift alone is an adequate explanation for the observed patterns of microevolutionary divergence in morphology. Morphological and molecular genetic characteristics of island and mainland populations are compared to test three predictions of drift theory: (1) that the pattern of morphological change is idiosyncratic to each island; (2) that there is concordance between morphological and neutral genetic shifts across island populations; and (3) for populations whose time of colonization is known, that the rate of morphological change is sufficiently slow to be accounted for solely by genetic drift. Our results are not consistent with these predictions. First, the direction of size shifts was consistently towards larger size, suggesting the action of a nonrandom process. Second, patterns of morphological divergence among recently colonized populations showed little concordance with divergence in neutral genetic characters. Third, rate tests of morphological change showed that effective population sizes were not small enough for random processes alone to account for the magnitude of microevolutionary change. Altogether, these three lines of evidence suggest that drift alone is not an adequate explanation of morphological differentiation in recently colonized island Zosterops and therefore we suggest that the observed microevolutionary changes are largely a result of directional natural selection.
Resumo:
The drosophilid fauna is well documented in eastern Australia but is poorly known in other parts of the continent. This paper summarises what is known of this fauna in the Northern Territory (NT), and includes results from banana trapping in the humid and arid zones. The 42 recorded species include species that breed in fruit, fungi and/or flowers, and a larval predator of scale insects. Drosophilids occur in all three major climate zones (humid, semiarid and arid) but predominate in the humid zone. Banana-attracted species in the humid zone (wet-dry tropics) were common in all sampled habitats: urban, rainforest and open woodland. They included predominantly urban and/or rainforest species. Of the species collected in open woodland, some are likely to be breeding there, whereas others may have been intercepted during movement across the area. The semiarid fauna is a depauperate version of that found in the humid region. Only three species have been recorded in the arid region: an endemic arid specialist, and two cosmopolitan species (D. simulans and D. melanogaster ) in urban Alice Springs. Overall, the NT drosophilid fauna represents a depauperate version of that found in eastern Australia, probably because of climatic factors and natural barriers to range expansion. There is little evidence of regional endemism, with probably only one (and at most three) species endemic to the NT, and no evidence of independent, natural dispersion from nearby Indonesia.
Resumo:
If the cestodes are excluded, then the parasitic platyhelminths of fishes divide neatly into the external and monoxenous Monogenea and the internal and heteroxenous Digenea. Both groups have apparently had long associations of coevolution, host switching and adaptation with fishes and have become highly successful in their respective habitats. Current estimates of species richness for the two groups suggest that they may be remarkably similar. Here we consider the nature of the diversity of the Monogenea. and Digenea of fishes in terms of richness of species and higher taxa to determine what processes may be responsible for observed differences. The Monogenea includes at least two super-genera (Dactylogyrus and Gyrodactylus) each of which has hundreds of species, no comparable genera are found in the Digenea. Possible reasons for this difference include the higher host specificity of monogeneans and their shorter generation Lime. If allowance is made for the vagaries of taxonomic 'lumping' and 'splitting', then there are probably comparable numbers of families of monogeneans and digeneans in fishes. However, the nature of the families differ profoundly. Richness in higher taxa (families) in the Digenea is explicable in terms of processes that appear to have been unimportant in the Monogenea. Readily identifiable sources of diversity in the Digenea are: recolonisation of fishes by taxa that arose in association with tetrapods; adoption of new sites within hosts; adoption of new diets and feeding mechanisms; adaptations relating to the exploitation of ecologically similar groups of fishes and second intermediate hosts; and adaptations relating to the exploitation of phylogenetic lineages of molluscs. In contrast, most higher- level monogenean diversity (other than that associated with the subclasses) relates principally to morphological specialisation for attachment by the haptor. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A comprehensive probabilistic model for simulating microstructure formation and evolution during solidification has been developed, based on coupling a Finite Differential Method (FDM) for macroscopic modelling of heat diffusion to a modified Cellular Automaton (mCA) for microscopic modelling of nucleation, growth of microstructures and solute diffusion. The mCA model is similar to Nastac's model for handling solute redistribution in the liquid and solid phases, curvature and growth anisotropy, but differs in the treatment of nucleation and growth. The aim is to improve understanding of the relationship between the solidification conditions and microstructure formation and evolution. A numerical algorithm used for FDM and mCA was developed. At each coarse scale, temperatures at FDM nodes were calculated while nucleation-growth simulation was done at a finer scale, with the temperature at the cell locations being interpolated from those at the coarser volumes. This model takes account of thermal, curvature and solute diffusion effects. Therefore, it can not only simulate microstructures of alloys both on the scale of grain size (macroscopic level) and the dendrite tip length (mesoscopic level), but also investigate nucleation mechanisms and growth kinetics of alloys solidified with various solute concentrations and solidification morphologies. The calculated results are compared with values of grain sizes and solidification morphologies of microstructures obtained from a set of casting experiments of Al-Si alloys in graphite crucibles.
Resumo:
The effects of wing shape, wing size, and fluctuating asymmetry in these measures oil the field fitness of T. nr. brassicae and T. pretiosum were investigated. Trichogramma wasps mass-reared on eggs of the factitious host Sitotroga cerealella were released in tomato paddocks and those females ovipositing on Helicoverpo spp. eggs were recaptured. Comparisons of the recaptured group with a sample from the release population were used to assess fitness. Wing data were obtained by positioning landmarks on mounted forewings. Size was then measured as the centroid size computed from landmark distances, while Procrustes analysis followed by principal component analysis was used to assess wing shape. Similar findings were obtained for both Trichogramma species: fitness of wasps was strongly related to wing size and some shape dimensions, but not to the asymmetries of these measures. Wasps which performed well in the field had larger wings and a different wing shape compared to wasps from the mass reared population. Both size and the shape dimensions were linearly associated with fitness although there was also some evidence for non-linear selection on shape. The results suggest that wing shape and wing size are reliable predictors of field fitness for these Trichogramma wasps.
Resumo:
The cuticular hydrocarbon compositions of two sympatric species of Australian Drosophila in the montium subgroup of the melanogaster group that use cuticular hydrocarbons in mate recognition have been characterized. Drosophila birchii has 34 components in greater than trace amounts, with a carbon number range of C-20 to C-33. Drosophila serrata has 21 components above trace level and a carbon number range of C-24 to C-31. These two species share eight hydrocarbon components, with all but two of them being monoenes. For both species, the (Z)-9-monoenes are the predominant positional isomer. The hydrocarbons of D. birchii are n-alkanes, n-alkenes (Z)-5-, (Z)-7-, (Z)-9-, and (Z)-11-), low to trace levels of homologous (Z,Z)-7,11- and (Z,Z)-9,13-dienes; and trace amounts of (Z,Z)-5,9- C-25:2, a major component of D. serrata. Only one methyl branched hydrocarbon was detected (2-methyl C-28), and it occurred at very low levels. The hydrocarbons of D. serrata are dominated by a homologous series of (Z,Z)-5,9-dienes, and notably, are characterized by the apparent absence of n-alkanes. Homologous series of (Z)-5-, (Z)-7-, and (Z)-9- alkenes are also present in D. serrata as well as 2-methyl alkanes. Drosophila serrata females display strong directional mate choice based on male cuticular hydrocarbons and prefer D. serrata males with higher relative abundances of the 2-methyl alkanes, but lower relative abundances of (Z,Z)-5,9- C-24:2 and (Z)-9-C-25:1.
Resumo:
The sexual ornamentation used by male guppies to attract females comprises many components, each of which varies considerably among males. Although natural and sexual selection have been shown to contribute to divergence among populations in male sexual ornaments, the role of sexual selection in maintaining polymorphism within populations is less clear. We used both parametric quadratic regression and nonparametric projection pursuit regression techniques to reveal the major axes of non-linear sexual selection on male ornaments. We visualized the fitness surfaces defined by these axes using thin-plate splines to allow a direct comparison of the two methodologies. Identification of the major axes of selection and their visualization was critical in determining the form and strength of nonlinear selection. Both types of analysis revealed fitness surfaces comprising three peaks, suggesting that there is more than one way to make an attractive guppy. Disruptive selection may be an important process underlying the presence of multiple sexual ornaments and may contribute to the maintenance of the high levels of polymorphism in male sexual ornaments found in guppy populations.
Resumo:
Field populations of Drosophila serrata display reproductive character displacement in cuticular hydrocarbons (CHCs) when sympatric with Drosophila birchii. We have previously shown that the naturally occurring pattern of reproductive character displacement can be experimentally replicated by exposing field allopatric populations of D. serrata to experimental sympatry with D. birchii. Here, we tested whether the repeated evolution of reproductive character displacement in natural and experimental populations was a consequence of genetic constraints on the evolution of CHCs. The genetic variance-covariance (G) matrices for CHCs were determined for populations of D. serrata that had evolved in either the presence or absence of D. birchii under field and experimental conditions. Natural selection on mate recognition under both field and experimental sympatric conditions increased the genetic variance in CHCs consistent with a response to selection based on rare alleles. A close association between G eigenstructure and the eigenstructure of the phenotypic divergence (D) matrix in natural and experimental populations suggested that G matrix eigenstructure may have determined the direction in which reproductive character displacement evolved during the reinforcement of mate recognition.
Resumo:
What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister-clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.
Resumo:
Why does species richness vary so greatly across lineages? Traditionally, variation in species richness has been attributed to deterministic processes, although it is equally plausible that it may result from purely stochastic processes. We show that, based on the best available phylogenetic hypothesis, the pattern of cladogenesis among agamid lizards is not consistent with a random model, with some lineages having more species, and others fewer species, than expected by chance. We then use phylogenetic comparative methods to test six types of deterministic explanation for variation in species richness: body size, life history, sexual selection, ecological generalism, range size and latitude. Of eight variables we tested, only sexual size dimorphism and sexual dichromatism predicted species richness. Increases in species richness are associated with increases in sexual dichromatism but reductions in sexual size dimorphism. Consistent with recent comparative studies, we find no evidence that species richness is associated with small body size or high fecundity. Equally, we find no evidence that species richness covaries with ecological generalism, latitude or range size.