939 resultados para 270100 Biochemistry and Cell Biology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously showed that 16-day-old rats exposed to a relatively high dose of ethanol at 10-15 postnatal days of age have fewer neurons in the hilus region of the hippocampus compared with controls. Dentate gyrus granule cell numbers, however, showed no statistically significant changes attributable to the ethanol treatment. It is possible that some of the changes in brain morphology, brought about as a result of the exposure to ethanol during early life, may not be manifested until later in life. This question has been further addressed in an extension to our previous study. Wistar rats were exposed to a relatively high daily dose of ethanol on postnatal days 10-15 by placement in a chamber containing ethanol vapour, for 3 h/day. The blood ethanol concentration was found to be similar to430 mg/dl at the end of the period of exposure. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anaesthetised and killed either at 16 or 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle and the physical disector methods were used to estimate, respectively, the regional volumes and neuron cell numerical densities in the hilus and granule cell regions of the dentate gyrus. The total numbers of neurons in the hilus region and granule cell layer were computed from these estimates. It was found that 16-day-old animals had 398,000-441,000 granule cells, irrespective of group. The numbers of granule cells increased such that by 30 days of age, rats had 487,000-525,500 granule cells. However, there were no significant differences between ethanol-treated rats and their age-matched controls in granule cell numbers. In contrast, ethanol-treated rats had slightly but significantly fewer neurons in the hilus region than did control animals at 16 days of age, but not at 30 days of age. Therefore, it appears that a short period of ethanol exposure during early life can have effects on neuron numbers of some hippocampal neurons, but not others. The effects on hilar neuron numbers, observed as a result of such short periods of ethanol treatment, appeared to be transitory. (C) 2003 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myb-binding protein 1a (Mybbp1a) is a novel nuclear protein localized predominantly, but not exclusively, in nucleoli. Although initially isolated as a c-Myb interacting protein, Mybbp1a is expressed ubiquitously, associates with a number of different transcription factors, and may play a role in both RNA polymerase I- and II-mediated transcriptional regulation. However, its precise function remains unclear. In this study we show that Mybbp1a is a nucleocytoplasmic shuttling protein and investigate the mechanisms responsible for both nuclear import and export. The carboxyl terminus of Mybbp1a, which contains seven short basic amino acid repeat sequences, is responsible for both nuclear and nucleolar localization, and this activity can be transferred to a heterologous protein. Deletion mapping demonstrated that these repeat sequences appear to act incrementally, with successive deletions resulting in a corresponding increase in the proportion of protein localized in the cytoplasm. Glutathione S-transferase pulldown experiments showed that the nuclear receptor importin-alpha/beta mediates Mybbp1a nuclear import. Interspecies heterokaryons were used to demonstrate that Mybbp1a was capable of shuttling between the nucleus and the cytoplasm. Deletion analysis and in vivo export studies using a heterologous assay system identified several nuclear export sequences which facilitate Mybbp1a nuclear export of Mybbp1a by CRM1-dependent and -independent pathways. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Xenopus laevis oocyte expression system was used to determine the activities of alpha-conotoxins EpI and the ribbon isomer of AuIB, on defined nicotinic acetylcholine receptors (nAChRs). In contrast to previous findings on intracardiac ganglion neurones, alpha-EpI showed no significant activity on oocyte-expressed alpha3beta4 and alpha3beta2 nAChRs but blocked the alpha7 nAChR with an IC50 value of 30 nM. A similar IC50 value (103 nM) was obtained on the alpha7/5HT(3) chimeric receptor stably expressed in mammalian cells. Ribbon AuIB maintained its selectivity on oocyte-expressed alpha3beta4 receptors but unlike in native cells, where it was 10-fold more potent than native alpha-AuIB, had 25-fold lower activity. These results indicate that as yet unidentified factors influence alpha-conotoxin pharmacology at native versus oocyte-expressed nAChRs. (C) 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently discovered cyclotides kalata B1 and kalata B2 are miniproteins containing a head-to-tail cyclized backbone and a cystine knot motif, in which disulfide bonds and the connecting backbone segments form a ring that is penetrated by the third disulfide bond. This arrangement renders the cyclotides extremely stable against thermal and enzymatic decay, making them a possible template onto which functionalities can be grafted.We have compared the hydrodynamic properties of two prototypic cyclotides, kalata B1 and kalata B2, using analytical ultracentrifugation techniques. Direct evidence for oligomerization of kalata B2 was shown by sedimentation velocity experiments in which a method for determining size distribution of polydisperse molecules in solution was employed. The shape of the oligomers appears to be spherical. Both sedimentation velocity and equilibrium experiments indicate that in phosphate buffer kalata B1 exists mainly as a monomer, even at millimolar concentrations. In contrast, at 1.6 mM, kalata B2 exists as an equilibrium mixture of monomer (30%), tetramer (42%), octamer (25%), and possibly a small proportion of higher oligomers. The results from the sedimentation equilibrium experiments show that this self-association is concentration dependent and reversible. We link our findings to the three-dimensional structures of both cyclotides, and propose two putative interaction interfaces on opposite sides of the kalata B2 molecule, one involving a hydrophobic interaction with the Phe(6), and the second involving a charge-charge interaction with the Asp(25) residue. An understanding of the factors affecting solution aggregation is of vital importance for future pharmaceutical application of these molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

alpha(5)beta(1) integrin from both wild-type CHO cells (CHO-K1) and deficient in proteoglycan biosynthesis (CHO-745) is post-translationally modified by glycosaminoglycan chains. We demonstrated this using [(35)S]sulfate metabolic labeling of the cells, enzymatic degradation, immunoprecipitation reaction with monoclonal antibody, fluorescence microscopy, and flow cytometry. The alpha(5)beta(1) integrin heterodimer is a hybrid proteoglycan containing both chondroitin and heparan sulfate chains. Xyloside inhibition of sulfate incorporation into alpha(5)beta(1) integrin also supports that integrin is a proteoglycan. Also. cells grown with xyloside adhered on fibronectin with no alteration in alpha(5)beta(1) integrin expression. However, haptotactic motility on fibronectin declined in cells grown with xyloside or chlorate as compared with controls. Thus, alpha(5)beta(1) integrin is a proteoglycan and the glycosaminoglycan chains of the integrin influence cell motility on fibronectin. Similar glycosylation of alpha(5)beta(1) integrin was observed in other normal and malignant cells, suggesting that this modification is conserved and important in the function of this integrin. Therefore, these glycosaminoglycan chains of alpha(5)beta(1) integrin are involved in cellular migration on fibronectin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first step in the common pathway for the biosynthesis of branched-chain amino acids is catalysed by acetohydroxyacid synthase (AHAS; EC 4.1.3.18). The enzyme is found in plants, fungi and bacteria, and is regulated by controls on transcription and translation, and by allosteric modulation of catalytic activity. It has long been known that the bacterial enzyme is composed of two types of subunit, and a similar arrangement has been found recently for the yeast and plant enzymes. One type of subunit contains the catalytic machinery, whereas the other has a regulatory function. Previously, we have shown [Pang and Duggleby (1999) Biochemistry 38, 5222-5231] that yeast AHAS can be reconstituted from its separately purified subunits. The, reconstituted enzyme is inhibited by valine, and ATP reverses this inhibition. In the present work, we further characterize the structure and the regulatory properties of reconstituted yeast AHAS. High phosphate concentrations are required for reconstitution and it is shown that these conditions are necessary for physical association between the catalytic and regulatory subunits. It is demonstrated by CD spectral changes that ATP binds to the regulatory subunit alone, most probably as MgATP. Neither valine nor MgATP causes dissociation of the regulatory subunit from the catalytic subunit. The specificity of valine inhibition and MgATP activation are examined and it is found that the only effective analogue of either regulator of those tested is the non-hydrolysable ATP mimic, adenosine 5 '-[beta,gamma -imido]triphosphate. The kinetics of regulation are studied in detail and it is shown that the activation by MgATP depends on the valine concentration in a complex manner that is consistent with a proposed quantitative model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (EC 4.1.3.18; AHAS) catalyzes the initial step in the formation of the branched-chain amino acids. The enzyme from most bacteria is composed of a catalytic subunit, and a smaller regulatory subunit that is required for full activity and for sensitivity to feedback regulation by valine. A similar arrangement was demonstrated recently for yeast AHAS, and a putative regulatory subunit of tobacco AHAS has also been reported. In this latter case, the enzyme reconstituted from its purified subunits remained insensitive to feedback inhibition, unlike the enzyme extracted from native plant sources. Here we have cloned, expressed in Escherichia coil, and purified the AHAS regulatory subunit of Ambidopsis thaliana. Combining the protein with the purified A. thaliana catalytic subunit results in an activity stimulation that is sensitive to inhibition by valine, leucine, and isoleucine. Moreover, there is a strong synergy between the effects of leucine and valine, which closely mimics the properties of the native enzyme. The regulatory subunit contains a sequence repeat of approximately 180 residues, and we suggest that one repeat binds leucine while the second binds valine or isoleucine. This proposal is supported by reconstitution studies of the individual repeats, which were also cloned, expressed, and purified. The structure and properties of the regulatory subunit are reminiscent of the regulatory domain of threonine deaminase (EC 4.2.1.16), and it is suggested that the two proteins are evolutionarily related.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

t Disulfide-bond (Dsb) proteins are a family of redox proteins containing a Cys-X-X-Cys motif. They are essential for disulfide-bond exchange in the bacterial periplasm and are necessary for the correct folding and function of many secreted proteins. CcmG (DsbE) is a reducing Dsb protein required for cytochrome c maturation. Crystals of Bradyrhizobium japonicum CcmG have been obtained that diffract X-rays to 1.14 Angstrom resolution. The crystals are orthorhombic, space group P2(1)2(1)2(1), with unit-cell parameters a = 35.1, b = 48.2, c = 90.2 Angstrom. Selenomethionine CcmG was expressed without using a methionine auxotroph or methionine-pathway inhibition and was purified without reducing agents.