989 resultados para 230203 Statistical Theory
Resumo:
As the hotel industry grows more competitive, quality guest service becomes an increasingly important part of managers' responsibility measuring the quality of service delivery is facilitated when managers know what types of assessment methods are available to them. The authors present and discuss the following available measurement techniques and describe the situations where they best meet the needs of hotel managers: management observation, employee feedback programs, comment cards, mailed surveys, personal and telephone interviews, focus groups, and mystery shopping.
Resumo:
The purpose of this study was to examine the effects of the use of technology on students’ mathematics achievement, particularly the Florida Comprehensive Assessment Test (FCAT) mathematics results. Eleven schools within the Miami-Dade County Public School System participated in a pilot program on the use of Geometers Sketchpad (GSP). Three of these schools were randomly selected for this study. Each school sent a teacher to a summer in-service training program on how to use GSP to teach geometry. In each school, the GSP class and a traditional geometry class taught by the same teacher were the study participants. Students’ mathematics FCAT results were examined to determine if the GSP produced any effects. Students’ scores were compared based on assignment to the control or experimental group as well as gender and SES. SES measurements were based on whether students qualified for free lunch. The findings of the study revealed a significant difference in the FCAT mathematics scores of students who were taught geometry using GSP compared to those who used the traditional method. No significant differences existed between the FCAT mathematics scores of the students based on SES. Similarly, no significant differences existed between the FCAT scores based on gender. In conclusion, the use of technology (particularly GSP) is likely to boost students’ FCAT mathematics test scores. The findings also show that the use of GSP may be able to close known gender and SES related achievement gaps. The results of this study promote policy changes in the way geometry is taught to 10th grade students in Florida’s public schools.
Resumo:
Goodness-of-fit tests have been studied by many researchers. Among them, an alternative statistical test for uniformity was proposed by Chen and Ye (2009). The test was used by Xiong (2010) to test normality for the case that both location parameter and scale parameter of the normal distribution are known. The purpose of the present thesis is to extend the result to the case that the parameters are unknown. A table for the critical values of the test statistic is obtained using Monte Carlo simulation. The performance of the proposed test is compared with the Shapiro-Wilk test and the Kolmogorov-Smirnov test. Monte-Carlo simulation results show that proposed test performs better than the Kolmogorov-Smirnov test in many cases. The Shapiro Wilk test is still the most powerful test although in some cases the test proposed in the present research performs better.
Resumo:
Multivariate normal distribution is commonly encountered in any field, a frequent issue is the missing values in practice. The purpose of this research was to estimate the parameters in three-dimensional covariance permutation-symmetric normal distribution with complete data and all possible patterns of incomplete data. In this study, MLE with missing data were derived, and the properties of the MLE as well as the sampling distributions were obtained. A Monte Carlo simulation study was used to evaluate the performance of the considered estimators for both cases when ρ was known and unknown. All results indicated that, compared to estimators in the case of omitting observations with missing data, the estimators derived in this article led to better performance. Furthermore, when ρ was unknown, using the estimate of ρ would lead to the same conclusion.
Resumo:
Suppose two or more variables are jointly normally distributed. If there is a common relationship between these variables it would be very important to quantify this relationship by a parameter called the correlation coefficient which measures its strength, and the use of it can develop an equation for predicting, and ultimately draw testable conclusion about the parent population. This research focused on the correlation coefficient ρ for the bivariate and trivariate normal distribution when equal variances and equal covariances are considered. Particularly, we derived the maximum Likelihood Estimators (MLE) of the distribution parameters assuming all of them are unknown, and we studied the properties and asymptotic distribution of . Showing this asymptotic normality, we were able to construct confidence intervals of the correlation coefficient ρ and test hypothesis about ρ. With a series of simulations, the performance of our new estimators were studied and were compared with those estimators that already exist in the literature. The results indicated that the MLE has a better or similar performance than the others.
Resumo:
We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field phi(c), and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schrodinger field representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle point for fixed boundary fields, which is the classical field phi(c), a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally reduced effective theory for the thermal system. We calculate the two-point correlation as an example.
Resumo:
The performance of the SAOP potential for the calculation of NMR chemical shifts was evaluated. SAOP results show considerable improvement with respect to previous potentials, like VWN or BP86, at least for the carbon, nitrogen, oxygen, and fluorine chemical shifts. Furthermore, a few NMR calculations carried out on third period atoms (S, P, and Cl) improved when using the SAOP potential
Resumo:
In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).
Resumo:
In this Contribution we show that a suitably defined nonequilibrium entropy of an N-body isolated system is not a constant of the motion, in general, and its variation is bounded, the bounds determined by the thermodynamic entropy, i.e., the equilibrium entropy. We define the nonequilibrium entropy as a convex functional of the set of n-particle reduced distribution functions (n ? N) generalizing the Gibbs fine-grained entropy formula. Additionally, as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free entropic oscillator. In the approach to the equilibrium regime, we find relaxation equations of the Fokker-Planck type, particularly for the one-particle distribution function.
Resumo:
In this thesis the X-ray tomography is discussed from the Bayesian statistical viewpoint. The unknown parameters are assumed random variables and as opposite to traditional methods the solution is obtained as a large sample of the distribution of all possible solutions. As an introduction to tomography an inversion formula for Radon transform is presented on a plane. The vastly used filtered backprojection algorithm is derived. The traditional regularization methods are presented sufficiently to ground the Bayesian approach. The measurements are foton counts at the detector pixels. Thus the assumption of a Poisson distributed measurement error is justified. Often the error is assumed Gaussian, altough the electronic noise caused by the measurement device can change the error structure. The assumption of Gaussian measurement error is discussed. In the thesis the use of different prior distributions in X-ray tomography is discussed. Especially in severely ill-posed problems the use of a suitable prior is the main part of the whole solution process. In the empirical part the presented prior distributions are tested using simulated measurements. The effect of different prior distributions produce are shown in the empirical part of the thesis. The use of prior is shown obligatory in case of severely ill-posed problem.
Resumo:
Exercises and solutions for a second year statistics course.
Resumo:
The performance of the SAOP potential for the calculation of NMR chemical shifts was evaluated. SAOP results show considerable improvement with respect to previous potentials, like VWN or BP86, at least for the carbon, nitrogen, oxygen, and fluorine chemical shifts. Furthermore, a few NMR calculations carried out on third period atoms (S, P, and Cl) improved when using the SAOP potential
Resumo:
We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.
Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics