994 resultados para 208-1263A
Resumo:
The Paleocene-Eocene thermal maximum (PETM) has been attributed to the rapid release of ~2000 * 10**9 metric tons of carbon in the form of methane. In theory, oxidation and ocean absorption of this carbon should have lowerd deep-sea pH, thereby triggering a rapid (<10,000-year) shoaling of the calcite compensation depth (CCD), followed by gradual recovery. Here we present geochemical data from five new South Atlantic deep-sea sections that constrain the timing and extent of massive sea-floor carbonate dissolution coincident with the PETM. The sections, from between 2.7 and 4.8 kilometers water depth, are marked by a prominent clay layer, the character of which indicates that the CCD shoaled rapidly (<10,000 years) by more than 2 kilometers and recovered gradually (>100,000 years). These findings indicate that a large mass of carbon (>>2000 * 10**9 metric tons of carbon) dissolved in the ocean at the Paleocene-Eocene boundary and that permanent sequestration of this carbon occurred through silicate weathering feedback.
Resumo:
The Paleocene - Eocene thermal maximum (PETM) is one of the best known examples of a transient climate perturbation, associated with a brief, but intense, interval of global warming and a massive perturbation of the global carbon cycle from injection of isotopically light carbon into the ocean-atmosphere system. One key to quantifying the mass of carbon released, identifying the source(s), and understanding the ultimate fate of this carbon is to develop high-resolution age models. Two independent strategies have been employed, cycle stratigraphy and analysis of extraterrestrial Helium (HeET), both of which were first tested on Ocean Drilling Program (ODP) Site 690. Both methods are in agreement for the onset of the PETM and initial recovery, or the clay layer ("main body"), but seem to differ in the final recovery phase of the event above the clay layer, where the carbonate contents rise and carbon isotope values return toward background values. Here we present a state-of-the-art age model for the PETM derived from a new orbital chronology developed with cycle stratigraphic records from sites drilled during ODP Leg 208 (Walvis Ridge, Southeastern Atlantic) integrated with published records from Site 690 (Weddell Sea, Southern Ocean, ODP Leg 113). During Leg 208, five Paleocene - Eocene (P-E) boundary sections (Sites 1262 to 1267) were recovered in multiple holes over a depth transect of more than 2200 m at the Walvis Ridge yielding the first stratigraphically complete P-E deep-sea sequence with moderate to relatively high sedimentation rates (1 to 3 cm/kyr). A detailed chronology was developed with non-destructive X-ray fluorescence (XRF) core scanning records on the scale of precession cycles, with a total duration of the PETM now estimated to be ~ 170 kyr. The revised cycle stratigraphic record confirms original estimates for the duration of the onset and initial recovery, but suggests a new duration for the final recovery that is intermediate to the previous estimates by cycle stratigraphy and HeET.