960 resultados para 1ST-ROW ATOMS
Resumo:
The functional source coding problem in which the receiver side information (Has-set) and demands (Want-set) include functions of source messages is studied using row-Latin rectangle. The source transmits encoded messages, called the functional source code, in order to satisfy the receiver's demands. We obtain a minimum length using the row-Latin rectangle. Next, we consider the case of transmission errors and provide a necessary and sufficient condition that a functional source code must satisfy so that the receiver can correctly decode the values of the functions in its Want-set.
Resumo:
分析了边坡工程地质条件和地质成因机制;根据现场调查数据建立了滑坡地质剖面,反演了滑坡发生时滑动面的抗剪强度参数;分析了原坡形及降雨所引起孔隙水压力对其稳定性的影响,并以反演获得的强度参数结合类似边坡岩体结构面强度试验统计结果,对原边坡进行了可靠度分析,获得了原边坡的潜在破坏概率,从而又在定量角度上获得了滑坡发生的原因。
Resumo:
The relation between the inner pressure of an atom in a solid and the density of energy of electrons under Refined TFD theory is given.
Proceedings of the 1st Cambridge Workshop on Universal Access and Assistive Technology (CWUAAT 2002)
Proceedings of the 1st Cambridge Workshop on Universal Access and Assistive Technology (CWUAAT 2002)
Resumo:
Mozambique tilapia (Oreochromis mossambicus) is an indigenous tilapia species in southern Africa, until now the majority of genetic research has been carried out on Asian species of tilapia but this project aims to look at this African species. Those most suited to further development in aquaculture in southern Africa have now been identified. The genetic characterisation of strains has been completed. This information has aided the choice of strains for use in small scale aquaculture and for genetically male tilapia (GMT) production. They will form the basis of future strategies for further genetic improvement, and management of genetic diversity of Mozambique tilapia. The information will also contribute towards responsible management and development of genetic resources, particularly with regard to indigenous species of tilapia. Good progress has been made with the adaptation and implementation of producing the supermale fish required to produce all male offspring, resulting in faster growing populations of tilapia. The presence of the project and its associated activity has been a catalyst for a surge in interest in tilapia culture throughout southern Africa. [PDF contains 183 pages]
Resumo:
Using an unperturbed scattering theory, the characteristics of H atom photoionization are studied respectively by a linearly- and by a circularly- polarized one-cycle laser pulse sequence. The asymmetry for photoelectrons in two directions opposite to each other is investigated. It is found that the asymmetry degree varies with the carrier-envelope (CE) phase, laser intensity, as well as the kinetic energy of photoelectrons. For the linear polarization, the maximal ionization rate varies with the CE phase, and the asymmetry degree varies with the CE phase in a sine-like pattern. For the circular polarization, the maximal ionization rate keeps constant for various CE phases, but the variation of asymmetry degree is still in a sine-like pattern.
Resumo:
Underlying matter and light are their building blocks of tiny atoms and photons. The ability to control and utilize matter-light interactions down to the elementary single atom and photon level at the nano-scale opens up exciting studies at the frontiers of science with applications in medicine, energy, and information technology. Of these, an intriguing front is the development of quantum networks where N >> 1 single-atom nodes are coherently linked by single photons, forming a collective quantum entity potentially capable of performing quantum computations and simulations. Here, a promising approach is to use optical cavities within the setting of cavity quantum electrodynamics (QED). However, since its first realization in 1992 by Kimble et al., current proof-of-principle experiments have involved just one or two conventional cavities. To move beyond to N >> 1 nodes, in this thesis we investigate a platform born from the marriage of cavity QED and nanophotonics, where single atoms at ~100 nm near the surfaces of lithographically fabricated dielectric photonic devices can strongly interact with single photons, on a chip. Particularly, we experimentally investigate three main types of devices: microtoroidal optical cavities, optical nanofibers, and nanophotonic crystal based structures. With a microtoroidal cavity, we realized a robust and efficient photon router where single photons are extracted from an incident coherent state of light and redirected to a separate output with high efficiency. We achieved strong single atom-photon coupling with atoms located ~100 nm near the surface of a microtoroid, which revealed important aspects in the atom dynamics and QED of these systems including atom-surface interaction effects. We present a method to achieve state-insensitive atom trapping near optical nanofibers, critical in nanophotonic systems where electromagnetic fields are tightly confined. We developed a system that fabricates high quality nanofibers with high controllability, with which we experimentally demonstrate a state-insensitive atom trap. We present initial investigations on nanophotonic crystal based structures as a platform for strong atom-photon interactions. The experimental advances and theoretical investigations carried out in this thesis provide a framework for and open the door to strong single atom-photon interactions using nanophotonics for chip-integrated quantum networks.
Resumo:
We theoretically study the influence of Coulomb potential for photoionization of hydrogen atoms in an intense laser field with elliptical polarization. The total ionization rates, photoelectron energy spectra, and photoelectron angular distributions are calculated with the Coulomb-Volkov wave functions in the velocity gauge and compared with those calculated in the length gauge as well as those calculated with the Volkov wave functions. By comparing the results obtained by the Coulomb-Volkov and Volkov wave functions, we find that for linear polarization the influence of Coulomb potential is obvious for low-energy photoelectrons, and as the photoelectron energy and/or the laser intensity increase, its influence becomes smaller. This trend, however, is not so clear for the case of elliptical polarization. We also find that the twofold symmetry in the photoelectron angular distributions for elliptical polarization is caused by the cooperation of Coulomb potential and interference of multiple transition channels. About the gauge issue, we show that the difference in the photoelectron angular distributions obtained by the velocity and length gauges becomes rather obvious for elliptical polarization, while the difference is generally smaller for linear polarization.