997 resultados para 189-1171D
Resumo:
The influence of orbital precession on early Paleogene climate and ocean circulation patterns in the southeast Pacific region is investigated by combining environmental analyses of cyclic Middle Eocene sediments and palynomorph records recovered from ODP Hole 1172A on the East Tasman Plateau with climate model simulations. Integration of results indicates that in the marine realm, direct effects of precessional forcing are not pronounced, although increased precipitation/runoff could have enhanced dinoflagellate cyst production. On the southeast Australian continent, the most pronounced effects of precessional forcing were fluctuations in summer precipitation and temperature on the Antarctic Margin. These fluctuations resulted in vegetational changes, most notably in the distribution of Nothofagus (subgenus Brassospora). The climate model results suggest significant fluctuations in sea ice in the Ross Sea, notably during Austral summers. This is consistent with the influx of Antarctic heterotrophic dinoflagellates in the early part of the studied record. The data demonstrate a strong precessionally driven climate variability and thus support the concept that precessional forcing could have played a role in early Antarctic glaciation via changes in runoff and/or precipitation.
Resumo:
Bulk and clay mineral investigations were conducted on ~750 samples from four sites drilled during Ocean Drilling Program Leg 189 on the western Tasmanian margin (Site 1168), the South Tasman Rise (Sites 1170 and 1171), and the East Tasman Plateau (Site 1172). The mineralogy of the bulk sediment is very similar at all sites, and major changes coincide with the boundaries of the three main lithologic units described in the Leg 189 Initial Reports volume. The clay mineral assemblages show significant regional differences, but their major variations coincide at all sites and with major changes in regional tectonics and climate.