989 resultados para 184-1145
Resumo:
General global cooling over the Neogene has been modulated by changes in Earth's orbital parameters. Investigations of deep-sea sediment sequences show that various orbital cycles can dominate climate records for different latitudes or for different time intervals. However, a comprehensive understanding of astronomical imprints over the entire Neogene has been elusive because of the general absence of long, continuous records extending beyond the Pliocene. We present benthic foraminiferal d18O and d13C records over the past 23 Ma at Ocean Drilling Program Site 1148 in the northern South China Sea and construct an astronomically tuned timescale (TJ08) for these records based on natural gamma radiation and color reflectance data at this site. Our results show that a 41 ka cycle has dominated sediment records at this location over the Neogene, displaying a linear response to orbital forcing. A 100 ka cycle has also been significant. However, it is correlated nonlinearly with Earth's orbital variations at the 100 ka band. The sediment records also display a prominent 405 ka cycle. Although this cycle was coherent with orbital forcing during the Oligocene and the early Miocene, it was not coherent with Earth's orbital variations at the 405 ka band over the whole Neogene. Amplification of Northern Hemisphere and Southern Hemisphere glaciation since the middle Miocene may be responsible for this change in sedimentary response. Our benthic foraminifera d18O and d13C records further exhibit amplitude variations with longer periods of 600, 1000, 1200, and 2400 ka. Apparently, these cycles are nonlinear responses to insolation forcing.
Resumo:
The biostratigraphy of Miocene-age sediment samples recovered from Ocean Drilling Program Sites 1143 and 1146, South China Sea, is presented. The preservation of the planktonic foraminifers recovered from both sites varies widely, from poor to very good. The volume of biogenic sediment in the >63-µm size fraction also varies considerably, with many samples being dominated by mud. In comparison to shipboard biostratigraphy, based on core catcher analyses with a depth resolution of ~10 m, we analyzed samples from the two stratigraphic columns every 2-3 m (~45- to 93-k.y. resolution). The placement of planktonic foraminifer zonal boundaries was made at a resolution of ~1.5 m at Site 1146 and ~3.0 m at Site 1143. The higher resolution has resulted in significant changes in biostratigraphic zonal boundary locations compared to shipboard results. For the time interval of 5.54-10.49 Ma, the changes in zonation reveal similar age-depth models at both sites, with three segments of changing sedimentation rate through the upper Miocene, though the differences in sedimentation rates at Site 1146 are subtler than those at Site 1143. The boundary between lithologic Units II and III at Site 1146 corresponds to a sharp change in sedimentation rate (58 to 21 m/m.y.) at 15.1 Ma (the first occurrence of Orbulina suturalis). At this site, the interval from 16.4 to 15.1 Ma is characterized by very high mass accumulation rates in the noncarbonate fraction. Above this interval the carbonate fraction becomes increasingly important in the sediment flux to the South China Sea. At Site 1143, sedimentation rates increase from 8 to 99 m/m.y. at 8.6 Ma. This corresponds to a dramatic increase in both carbonate and noncarbonate mass accumulation rates at the site, but no change in lithology.
Resumo:
Site 1143 is located at 9°21.72'N, 113°17.11'E, at a water depth of 2772 m within a basin on the southern continental margin of the South China Sea. Three holes were cored at the site and combined into a composite (spliced) stratigraphic section that documents complete recovery for the upper 190.85 meters composite depth, the interval of advanced piston coring (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Wang et al., 2001, doi:10.1007/BF02907085). The early Pliocene to Holocene sediment sequence provided abundant and well-preserved calcareous microfossils and offered an excellent opportunity to establish foraminiferal stable isotope records. Here, we present benthic and planktonic d18O and d13C records that cover the last 5 m.y. These data sets will provide an important basis for upcoming studies to generate an orbitally tuned oxygen isotope stratigraphy and examine long- and short-term changes in deep and surface water mass signatures (temperature, salinity, and nutrients) with an average sample spacing of ~2.9 k.y. for the benthic and ~2.6 k.y. for the planktonic records.
Resumo:
Sedimentological and faunal records from the transitional period marking the onset of widespread northern hemisphere glaciation have been investigated at Ocean Drilling Program Site 984. The late Pliocene interglacial sediments of the northeast Atlantic are carbonate rich and show evidence of vigorous bottom water circulation at intermediate water depths. Contrasting this, the late Pliocene glacial sediments are characterised by carbonate dissolution and slower bottom current velocities. Weak or "leaky" Norwegian Sea overflows, undersaturated with respect to carbonate, influenced this region during the late Pliocene glacials. The early Pleistocene pattern of intermediate water circulation appears to have changed radically in the northeast Atlantic. At this time, interglacial carbonate values and inferred bottom current velocities are low. This suggests slow-flowing, undersaturated Norwegian Sea water bathing the site. The overflow increased during the early Pleistocene interglacials as the exchange between the Atlantic and Norwegian-Greenland Seas improved. The most significant feature of the early Pleistocene glacials is the increase in inferred bottom current velocity. These changes reflect a switch in deep North Atlantic convection to shallower depths during glacial periods, possibly in a manner similar to the increasing contribution of glacial intermediate water to the North Atlantic during the late Pleistocene glacials. Our results suggest that the late Pleistocene climate variability of the North Atlantic is a pervasive feature of the late Pliocene-early Pleistocene record.