1000 resultados para 167-1018


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Holocene and latest Pleistocene oceanographic conditions and the coastal climate of northern California have varied greatly, based upon high-resolution studies (ca. every 100 years) of diatoms, alkenones, pollen, CaCO3%, and total organic carbon at Ocean Drilling Program (ODP) Site 1019 (41.682°N, 124.930°W, 980 m water depth). Marine climate proxies (alkenone sea surface temperatures [SSTs] and CaCO3%) behaved remarkably like the Greenland Ice Sheet Project (GISP)-2 oxygen isotope record during the Bølling-Allerod, Younger Dryas (YD), and early part of the Holocene. During the YD, alkenone SSTs decreased by >3°C below mean Bølling-Allerod and Holocene SSTs. The early Holocene (ca. 11.6 to 8.2 ka) was a time of generally warm conditions and moderate CaCO3 content (generally >4%). The middle part of the Holocene (ca. 8.2 to 3.2 ka) was marked by alkenone SSTs that were consistently 1-2°C cooler than either the earlier or later parts of the Holocene, by greatly reduced numbers of the gyre-diatom Pseudoeunotia doliolus (<10%), and by a permanent drop in CaCO3% to <3%. Starting at ca. 5.2 ka, coastal redwood and alder began a steady rise, arguing for increasing effective moisture and the development of the north coast temperate rain forest. At ca. 3.2 ka, a permanent ca. 1°C increase in alkenone SST and a threefold increase in P. doliolus signaled a warming of fall and winter SSTs. Intensified (higher amplitude and more frequent) cycles of pine pollen alternating with increased alder and redwood pollen are evidence that rapid changes in effective moisture and seasonal temperature (enhanced El Niño-Southern Oscillation [ENSO] cycles) have characterized the Site 1019 record since about 3.5 ka.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Siliciclastic sedimentation at Ocean Drilling Program Site 1017 on the southern slope of the Santa Lucia Bank, central California margin, responded closely to oceanographic and climatic change over the past ~130 ka. Variation in mean grain-size and sediment sorting within the ~25-m-thick succession from Hole 1017E show Milankovitch-band to submillenial-scale variation. Mean grain size of the "sortable silt" fraction (10-63 µm) ranges from 17.6 to 33.9 µm (average 24.8 µm) and is inversely correlated with the degree of sorting. Much of the sediment has a bimodal or trimodal grain-size distribution that is composed of distinct fine silt, coarse silt to fine sand, and clay-size components. The position of the mode and the sorting of each component changes through the succession, but the primary variation is in the presence or abundance of the coarse silt fraction that controls the overall mean grain size and sorting of the sample. The occurrence of the best-sorted, finest grained sediment at high stands of sea level (Holocene, marine isotope Substages 5c and 5e) reflect the linkage between global climate and the sedimentary record at Site 1017 and suggest that the efficiency of off-shelf transport is a key control of sedimentation on the Santa Lucia Slope. It is not clear what proportion of the variation in grain size and sorting may also be caused by variations in bottom current strength and in situ hydrodynamic sorting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen isotopic (d18O) climatic stratigraphy and radiocarbon chronology, at high resolution, have been used to establish an age model for Ocean Drilling Program Hole 1017E, a continuous 25-m sequence of hemipelagic sediments from the continental slope (956 m water depth), east of Point Arguella, Southern California. The upper part of Hole 1017E from ~33 ka (7.445 mbsf) was dated using 13 calendar-corrected radiocarbon ages of mixed planktonic foraminiferal assemblages. Benthic oxygen isotopic stratigraphy records a continuous 130-k.y. sequence ranging from marine isotope Stage 6 to the present day. The benthic d18O curve, representing the last two interglacial and glacial cycles, closely resembles the well-dated, deep-sea reference sequence, providing a detailed chronologic framework. Sedimentation rates remained relatively constant throughout the sequence at ~18 cm/k.y. and were sufficiently rapid to provide considerable potential for high-resolution paleoceanographic/paleoclimatic investigations. Planktonic foraminiferal oxygen isotopic stratigraphy based on the surface-dwelling form Globigerina bulloides defines an almost complete sequence of interstadial/stadial oscillations (Dansgaard/Oeschger cycles [D/O]). Combined use of radiocarbon chronology, deep-sea oxygen isotopic datums, and visual pattern matching has enabled us to identify the sequence of D/O cycles as described for the Greenland (GRIP2) ice core. This has strengthened the stratigraphic framework for the last 60 k.y. in the sequence as a basis for further paleoenvironmental investigations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: