995 resultados para 1 sigma, 230Th-normalization
Resumo:
The 106 m long composite profile from site 2 of ICDP expedition 5022 (PASADO) at Laguna Potrok Aike documents a distinct change in sedimentation patterns from pelagic sediments at the top to dominating mass movement deposits at its base. The main lithological units correspond to the Holocene, to the Lateglacial and to the last glacial period and can be interpreted as the result of distinct environmental variations. Overflow conditions might have been achieved during the last glacial period, while signs of desiccation are absent in the studied sediment record. Altogether, 58 radiocarbon dates were used to establish a consistent age-depth model by applying the mixed-effect regression procedure which results in a basal age of 51.2 cal. ka BP. Radiocarbon dates show a considerable increase in scatter with depth which is related to the high amount of reworking. Validation of the obtained chronology was achieved with geomagnetic relative paleointensity data and tephra correlation.
Resumo:
The primary Mg/Ca ratio of foraminiferal shells is a potentially valuable paleoproxy for sea surface temperature (SST) reconstructions. However, the reliable extraction of this ratio from sedimentary calcite assumes that we can overcome artifacts related to foraminiferal ecology and partial dissolution, as well as contamination by secondary calcite and clay. The standard batch method for Mg/Ca analysis involves cracking, sonicating, and rinsing the tests to remove clay, followed by chemical cleaning, and finally acid-digestion and single-point measurement. This laborious procedure often results in substantial loss of sample (typically 30-60%). We find that even the earliest steps of this procedure can fractionate Mg from Ca, thus biasing the result toward a more variable and often anomalously low Mg/Ca ratio. Moreover, the more rigorous the cleaning, the more calcite is lost, and the more likely it becomes that any residual clay that has not been removed by physical cleaning will increase the ratio. These potentially significant sources of error can be overcome with a flow-through (FT) sequential leaching method that makes time- and labor-intensive pretreatments unnecessary. When combined with time-resolved analysis (FT-TRA) flow-through, performed with a gradually increasing and highly regulated acid strength, produces continuous records of Mg, Sr, Al, and Ca concentrations in the leachate sorted by dissolution susceptibility of the reacting material. Flow-through separates secondary calcite from less susceptible biogenic calcite and clay, and further resolves the biogenic component into primary and more resistant fractions. FT-TRA reliably separates secondary calcite (which is not representative of original life habitats) from the more resistant biogenic calcite (the desired signal) and clay (a contaminant of high Mg/Ca, which also contains Al), and further resolves the biogenic component into primary and more resistant fractions that may reflect habitat or other changes during ontogeny. We find that the most susceptible fraction of biogenic calcite in surface dwelling foraminifera gives the most accurate value for SST and therefore best represents primary calcite. Sequential dissolution curves can be used to correct the primary Mg/Ca ratio for clay, if necessary. However, the temporal separation of calcite from clay in FT-TRA is so complete that this correction is typically <=2%, even in clay-rich sediments. Unlike hands-on batch methods, that are difficult to reproduce exactly, flow-through lends itself to automation, providing precise replication of treatment for every sample. Our automated flow-through system can process 22 samples, two system blanks, and 48 mixed standards in <12 hours of unattended operation. FT-TRA thus represents a faster, cheaper, and better way to determine Mg/Ca ratios in foraminiferal calcite.
Resumo:
We report the intercalibration of paleomagnetic secular variation (PSV) and radiocarbon dates of two expanded postglacial sediment cores from geographically proximal, but oceanographically and sedimentologically contrasting settings. The objective is to improve relative correlation and chronology over what can be achieved with either method alone. Core MD99-2269 was taken from the Húnaflóaáll Trough on the north Iceland shelf. Core MD99-2322 was collected from the Kangerlussuaq Trough on the east Greenland margin. Both cores are well dated, with 27 and 20 accelerator mass spectrometry 14C dates for cores 2269 and 2322, respectively. Paleomagnetic measurements made on u channel samples document a strong, stable, single-component magnetization. The temporal similarities of paleomagnetic inclination and declination records are shown using each core's independent calibrated radiocarbon age model. Comparison of the PSV records reveals that the relative correlation between the two cores could be further improved. Starting in the depth domain, tie points initially based on calibrated 14C dates are either adjusted or added to maximize PSV correlations. Radiocarbon dates from both cores are then combined on a common depth scale resulting from the PSV correlation. Support for the correlation comes from the consistent interweaving of dates, correct alignment of the Saksunarvatn tephra, and the improved correlation of paleoceanographic proxy data (percent carbonate). These results demonstrate that PSV correlation used in conjunction with 14C dates can improve relative correlation and also regional chronologies by allowing dates from various stratigraphic sequences to be combined into a single, higher dating density, age-to-depth model.
Resumo:
Hypabyssal rocks of the Omgon Range, Western Kamchatka that intrude Upper Albian-Lower Campanian deposits of the Eurasian continental margin belong to three coeval (62.5-63.0 Ma) associations: (1) ilmenite gabbro-dolerites, (2) titanomagnetite gabbro-dolerites and quartz microdiorites, and (3) porphyritic biotite granites and granite-aplites. Early Paleocene age of ilmenite gabbro-dolerites and biotite granites was confirmed by zircon and apatite fission-track dating. Ilmenite and titanomagnetite gabbro-dolerites were produced by multilevel fractional crystallization of basaltic melts with, respectively, moderate and high Fe-Ti contents and contamination of these melts with rhyolitic melts of different compositions. Moderate- and high-Fe-Ti basaltic melts were derived from mantle spinel peridotite variably depleted and metasomatized by slab-derived fluid prior to melting. The melts were generated at variable depths and different degrees of melting. Biotite granites and granite aplites were produced by combined fractional crystallization of a crustal rhyolitic melt and its contamination with terrigenous rocks of the Omgon Group. The rhyolitic melts were likely derived from metabasaltic rocks of suprasubduction nature. Early Paleocene hypabyssal rocks of the Omgon Range were demonstrated to have been formed in an extensional environment, which dominated in the margin of the Eurasian continent from Late Cretaceous throughout Early Paleocene. Extension in the Western Kamchatka segment preceded the origin of the Western Koryakian-Kamchatka (Kinkil') continental-margin volcanic belt in Eocene time. This research was conducted based on original geological, mineralogical, geochemical, and isotopic (Rb-Sr) data obtained by the authors.
Resumo:
Fresh deposits above the margins of Reedy Glacier show that maximum ice levels during the last glaciation were several hundred meters above present near the glacier mouth and converged to less than 60 m above the present-day surface at the head of the glacier. Exposure ages of samples from five sites along its margin show that Reedy Glacier and its tributaries thickened asynchronously between 17 and 7 kyr BP At the Quartz Hills, located midway along the glacier, maximum ice levels were reached during the period 17-14 kyr BP. Farther up-glacier the ice surface reached its maximum elevation more recently: 14.7-10.2 kyr BP at the Caloplaca Hills; 9.1-7.7 kyr BP at Mims Spur; and around 7 kyr BP at Hatcher Bluffs. We attribute this time-transgressive behavior to two different processes: At the glacier mouth, growth of grounded ice and subsequent deglaciation in the Ross Sea embayment caused a wave of thickening and then thinning to propagate up-glacier. During the Lateglacial and Holocene, increased snow accumulation on the East Antarctic Ice Sheet caused transient thickening at the head of the glacier. An important result of this work is that moraines deposited along Reedy Glacier during the last ice age cannot be correlated to reconstruct a single glacial maximum longitudinal profile. The profile steepened during deglaciation of the Ross Sea, thinning at the Quartz Hills after 13 kyr BP while thickening upstream. Near its confluence with Mercer Ice Stream, rapid thinning beginning prior to 7-8 kyr BP reduced the level of Reedy Glacier to close to its present level. Thinning over the past 1000 years has lowered the glacier by less than 20 m.
Resumo:
Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, accompanied by a decrease in benthic d11B. We suggest this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is demonstrated in a series of experiments with an intermediate complexity Earth system model. These experiments also show that breakdown of stratification in the North Pacific leads to a rapid ~30 ppm increase in atmospheric CO2, along with decreases in atmospheric d13C and D14C, consistent with observations of the early deglaciation. Our inference of deep water formation is based mainly on results from a single sediment core, and our boron isotope data are unavoidably sparse in the key HS1 interval, so this hypothesis merits further testing. However we note that there is independent support for breakdown of stratification in shallower waters during this period, including a minimum in d15N, younging in intermediate water 14C, and regional warming. We also re-evaluate deglacial changes in North Pacific productivity and carbonate preservation in light of our new data, and suggest that the regional pulse of export production observed during the Bølling-Allerød is promoted by relatively stratified conditions, with increased light availability and a shallow, potent nutricline. Overall, our work highlights the potential of NPDW formation to play a significant and hitherto unrealized role in deglacial climate change and CO2 rise.
Resumo:
Detrital K-feldspars and muscovites from Ocean Drilling Program Leg 116 cores that have depositional ages from 0 to 18 Ma have been dated by the 40Ar/39Ar technique. Four to thirteen individual K-feldspars have been dated from seven stratigraphic levels, each of which have a very large range, up to 1660 Ma. At each level investigated, at least one K-feldspar yielded an age minimum which is, within uncertainty, identical to the age of deposition. One to twelve single muscovite crystals from each of six levels have also been studied. The range of muscovite ages is less than that of the K-feldspars and, with one exception, reveal only a 20-Ma spread in ages. As with the K-feldspars, each level investigated contains muscovites with mineral ages essentially identical to depositional ages. These results indicate that a significant portion of the material in the Bengal Fan is first-cycle detritus derived from the Himalayas. Therefore, the significant proportion of sediment deposited in the distal fan in the early to mid Miocene can be ascribed to a significant pulse of uplift and erosion in the collision zone. Moreover, these data indicate that during the entire Neogene, some portion of the Himalayan orogen was experiencing rapid erosion (<= uplift). The lack of granulite facies rocks in the eastern Himalayas and Tibetan Plateau suggests that very rapid uplift must have been distributed in brief pulses in different places in the mountain belt. We suggest that the great majority of the crystals with young apparent ages have been derived from the southern slope of the Himalayas, predominantly from near the main central thrust zone. These data provide further evidence against tectonic models in which the Himalayas and Tibetan plateaus are uplifted either uniformly during the past 40 m.y. or mostly within the last 2 to 5 m.y.
Resumo:
40Ar-39Ar incremental heating experiments and electron microprobe analyses were performed on basaltic rocks recovered from Site 1001 during Ocean Drilling Program Leg 165. The lower Nicaraguan Rise, on which Site 1001 lies, appears to be part of a larger Caribbean oceanic plateau that makes up the core of the Caribbean plate. Our results indicate an eruption age of 81 ± 1 Ma. A single flow-rim glass is tholeiitic and almost identical to the shipboard X-ray fluorescence analyses of the whole rock. The slightly porphyritic basalts have at least two populations of plagioclase, groundmass, and glomerocrystic plagioclase laths that appear to be in equilibrium with the surrounding melt and corroded tabular phenocrysts that have a higher An content (An84-86).
Resumo:
Instrumental data suggest that major shifts in tropical Pacific atmospheric dynamics and hydrology have occurred within the past century, potentially in response to anthropogenic warming. To better understand these trends, we use the hydrogen isotopic ratios of terrestrial higher plant leaf waxes (DDwax) in marine sediments from southwest Sulawesi, Indonesia, to compile a detailed reconstruction of central Indo-Pacific Warm Pool (IPWP) hydrologic variability spanning most of the last two millennia. Our paleodata are highly correlated with a monsoon reconstruction from Southeast Asia, indicating that intervals of strong East Asian summer monsoon (EASM) activity are associated with a weaker Indonesian monsoon (IM). Furthermore, the centennial-scale oscillations in our data follow known changes in Northern Hemisphere climate (e.g., the Little Ice Age and Medieval Warm Period) implying a dynamic link between Northern Hemisphere temperatures and IPWP hydrology. The inverse relationship between the EASM and IM suggests that migrations of the Intertropical Convergence Zone and associated changes in monsoon strength caused synoptic hydrologic shifts in the IPWP throughout most of the past two millennia.
Resumo:
40Ar-39Ar step-heating dating was applied to a basalt from Hole 462 and to basalt and dolerite samples from Hole 462A. Only a basalt sample at Hole 462A yielded a reasonable isochron age, 110 ± 3 million years. The radiometric age is consistent with the fossil record (Cenomanian) in the sediments, into which the basalt sill intruded. However, the age is much less than that of the oceanic basement as deduced from the magnetic anomaly (M-26).
Resumo:
Composite stacks were constructed by superimposing 6 to 13 benthic foraminiferal d18O records covering the period 0-850 ka. An initial timescale for each core was established using radioisotopic age control points and assuming constant sedimentation rates between these points. The average of these records is our 13-core "untuned" stack. Next, we matched the 41 kyr component of each record individually to variations in Earth's obliquity. Four of the 13 records produced timescales that were inconsistent with one or more of the known radioisotopic ages. The nine remaining cores were averaged to create a "minimally tuned" stack. Six of the minimally tuned cores were assembled into a "tropical" stack. For each stack we estimated the uncertainty envelope from the standard deviation of the constituents. Spectral analysis of the three stacks indicates that benthic d18O is dominated by a 100 kyr oscillation that has a narrow spectral peak. The contribution of precession to the total variance is small when compared to prior results from planktic stacks.
Resumo:
High-resolution records from IMAGES core MD95-2011 in the eastern Norwegian Sea provide evidence for relatively large- and small-scale high-latitude climate variability throughout the Holocene. During the early and mid-Holocene a situation possibly driven by consistent stronger westerlies increased the eastward influence of Arctic intermediate and near-surface waters. For the late Holocene a relaxation of the atmospheric forcing resulted in increased influence of Atlantic water. The main changes in Holocene climate show no obvious connection to changing solar irradiance, and spectral analysis reveals no consistent signature for any periodic behavior of Holocene climate at millennial or centennial timescales. There are, however, indications of consistent multidecadal variability.
Resumo:
Ocean circulation changes along the continental shelf of the Nordic and Barents Seas have been investigated in order to reconstruct regional changes in the inflow of Atlantic Water (AW) through the last 16,000 calibrated (cal) years (yr) B.P. We have selected five time-slices representing the late glacial (16,000-15,000 cal yr B.P.), the Bølling-Allerød warm interstadials (14,500-13,500 cal yr B.P.), the Younger Dryas cold stadial (12,500-11,500 cal yr B.P.), the early Holocene (9500-7500 cal yr B.P.) and the late Holocene (4000-2000 cal yr B.P.). Twelve previously published records of the distribution of benthic foraminifera faunas and ice-rafted debris have been compiled. The earliest sign of Atlantic Water inflow was recorded at the northern Iceland shelf at 16,000-15,000 cal yr B.P. The inflow of warm AW to the Nordic Seas shelf has been persistent since, but with variable strength and geographic pattern. An apparent zonal seesaw pattern in the strength of the Norwegian Atlantic Current (NwAC) and the Irminger Current (IC) during the late glacial, Bølling-Allerød and Younger Dryas periods was found. During the Holocene, no zonal differences in the inflows of NwAC and IC were found. A strong meridional gradient with warmer conditions at lower latitudes and relatively cold conditions at high northern latitudes existed.
Resumo:
We detail the petrography and mineralogy of 145 basaltic rocks from the top, middle, and base of flow units identified on shipboard along with associated pyroclastic samples. Our account includes representative electron microprobe analyses of primary and secondary minerals; 28 whole-rock major-oxide analyses; 135 whole-rock analyses each for 21 trace elements; 7 whole-rock rare-earth analyses; and 77 whole-rock X-ray-diffraction analyses. These data show generally similar petrography, mineralogy, and chemistry for the basalts from all four sites; they are typically subalkaline and consanguineous with limited evolution along the tholeiite trend. Limited fractionation is indicated by immobile trace elements; some xenocrystic incorporation from more basic material also occurred. Secondary alteration products indicate early subaerial weathering followed by prolonged interaction with seawater, most likely below 150°C at Holes 552, 553A, and 554A. At Hole 555, greenschist alteration affected the deepest rocks (olivine-dolerite) penetrated, at 250-300°C.
Resumo:
Distinctive, massive to stratified, pale blue volcaniclastics, initially referred to as the "blue tuff," were encountered at all four sites drilled during ODP Leg 127 in the Japan Sea. Detailed vertical sequence analysis, plagioclase chemistry, plagioclase 87Sr/86Sr isotopic composition, and 40Ar/39Ar age dating indicate that thick sequences of the blue tuff are not genetically related. Blue tuffs at Hole 794B were apparently deposited by density flows at ambient temperature. Deposition was penecontemporaneous with a large submarine phreatomagmatic eruption at 14.9 Ma in bathyal or deeper water depths. The blue tuffs at this location comprise mostly reworked hydroclastic glass shards and lesser amounts of plagioclase crystals. Pyrogenic plagioclase has an average An mole% of 18±3. Comparison of blue tuff plagioclase compositions with the composition of plagioclase from acoustic basement at Site 794 suggests that these rocks are not genetically related. As such, the extrapolation of sediment accumulation rate data in conjunction with this more precise age for the blue tuff corroborates previous minimum age estimates of 16.2 Ma for acoustic basement at Site 794. Blue tuffs at Hole 796B were probably deposited at ambient temperatures by downslope slumping and density flow of reworked pyrogenic debris. This debris includes abundant bubble wall glass shards and plagioclase crystals, with variable admixture of volcanic lithic and intrabasinal fragments. Pyrogenic fragments were produced by subaerial or shallow submarine, magmatic eruptions dated at 7.6 Ma. Blue tuffs contain a heterogeneous mixture of unrelated fragments including a mixed population of plagioclase crystals. The average An mole% of the predominant, probable comagmatic, plagioclase population is 30±4. The two sequences of blue tuff studied are distinct in age, mineral composition, and the eruptive origin of pyroclastic fragments. Preliminary 87Sr/86Sr isotopic compositions of plagioclase, however, indicates that blue tuffs at both locations are the product of typical, subduction-related island arc magmatism. Based on the results of this study, there is no justification for stratigraphic correlation of widespread, Miocene, blue to blue-gray bentonitic tuff and tuffaceous sandstones nor the interpretation that these strata are indicative of regional, explosive submarine volcanism genetically related to rifting and formation of the Japan Sea. Rather, these reworked pyroclastic strata of intermediate composition were deposited over a protracted 6-8 m.y. period in association with widespread, subduction-related submarine to subaerial volcanism in the Japan Sea backarc basin.