981 resultados para 1 KHZ
Resumo:
We report on the first recording of a 300-nm-period structure in a permanently moving sample of a pure fused silica using the tightly-focused, 82 nJ, 267 nm, 300 fs, 1 kHz laser pulses.
Resumo:
The deliberate addition of Gaussian noise to cochlear implant signals has previously been proposed to enhance the time coding of signals by the cochlear nerve. Potentially, the addition of an inaudible level of noise could also have secondary benefits: it could lower the threshold to the information-bearing signal, and by desynchronization of nerve discharges, it could increase the level at which the information-bearing signal becomes uncomfortable. Both these effects would lead to an increased dynamic range, which might be expected to enhance speech comprehension and make the choice of cochlear implant compression parameters less critical (as with a wider dynamic range, small changes in the parameters would have less effect on loudness). The hypothesized secondary effects were investigated with eight users of the Clarion cochlear implant; the stimulation was analogue and monopolar. For presentations in noise, noise at 95% of the threshold level was applied simultaneously and independently to all the electrodes. The noise was found in two-alternative forced-choice (2AFC) experiments to decrease the threshold to sinusoidal stimuli (100 Hz, 1 kHz, 5 kHz) by about 2.0 dB and increase the dynamic range by 0.7 dB. Furthermore, in 2AFC loudness balance experiments, noise was found to decrease the loudness of moderate to intense stimuli. This suggests that loudness is partially coded by the degree of phase-locking of cochlear nerve fibers. The overall gain in dynamic range was modest, and more complex noise strategies, for example, using inhibition between the noise sources, may be required to get a clinically useful benefit. © 2006 Association for Research in Otolaryngology.
Resumo:
We demonstrate an all-fiber passively Q-switched erbiumdoped fiber laser (EDFL) using a gold-nanosphere (GNS) based saturable absorber (SA) with evanescent field interaction. Using the interaction of evanescent field for fabricating SAs, long nonlinear interaction length of evanescent wave and GNSs can be achieved. The GNSs are synthesized from mixing solution of chloroauricacid (HAuCl4) and sodium citrate by the heating effects of the microfiber's evanescent field radiation. The proposed passively Q-switched EDFL could give output pulses at 1562 nm with pulse width of 1.78 μs, a repetition rate of 58.1 kHz, a pulse energy of 133 nJ and a output power of 7.7 mWwhen pumped by a 980 nm laser diode of 237 mW. © 2014 Optical Society of America.
Resumo:
Fiber Bragg gratings can be used for monitoring different parameters in a wide variety of materials and constructions. The interrogation of fiber Bragg gratings traditionally consists of an expensive and spacious peak tracking or spectrum analyzing unit which needs to be deployed outside the monitored structure. We present a dynamic low-cost interrogation system for fiber Bragg gratings which can be integrated with the fiber itself, limiting the fragile optical in- and outcoupling interfaces and providing a compact, unobtrusive driving and read-out unit. The reported system is based on an embedded Vertical Cavity Surface Emitting Laser (VCSEL) which is tuned dynamically at 1 kHz and an embedded photodiode. Fiber coupling is provided through a dedicated 45° micromirror yielding a 90° in-the-plane coupling and limiting the total thickness of the fiber coupled optoelectronic package to 550 µm. The red-shift of the VCSEL wavelength is providing a full reconstruction of the spectrum with a range of 2.5 nm. A few-mode fiber with fiber Bragg gratings at 850 nm is used to prove the feasibility of this low-cost and ultra-compact interrogation approach.
Resumo:
With the emergence of new technologies, has grown the need to use new materials, and this has intensified research on the collection and use of materials from renewable sources, is to reduce production costs and / or environmental impact. In this context, it was found that the sheath coconut straw, can be utilized as raw material for the production of a eco-composite that can be used as a thermal and acoustic insulator. After selected from the coconut sheaths were subjected to treatment with aqueous 2 % sodium hydroxide (NaOH). The composite study was produced with the sheath and coconut natural latex, with coconut sheath percentage in the proportions 15%, 25% and 35% of the total compound volume. Physical, thermal and acoustic properties of the composites were analyzed in order to obtain data on the use of viability as thermoacoustic insulation. The CP15 composites, CP25 and CP35 showed thermal conductivity 0.188 W/m.K, 0.155 W/m.K and 0.150 W/m.K, respectively. It can be applied as thermal insulation in hot systems to 200 ° C. The CP35 composite was more efficient as a thermal and acoustic insulation, providing 20% noise reduction, 31% and 34% for frequencies of 1 kHz, 2 kHz and 4 kHz, respectively. The analyzes were based on ABNT, ASTM, UL. Based on these results, it can be concluded that the eco-composite produced the hem of coconut can be used as thermal and acoustic insulation. Thus, it gives a more noble end to this material, which most often is burned or disposed of improperly in the environment.
Resumo:
With the emergence of new technologies, has grown the need to use new materials, and this has intensified research on the collection and use of materials from renewable sources, is to reduce production costs and / or environmental impact. In this context, it was found that the sheath coconut straw, can be utilized as raw material for the production of a eco-composite that can be used as a thermal and acoustic insulator. After selected from the coconut sheaths were subjected to treatment with aqueous 2 % sodium hydroxide (NaOH). The composite study was produced with the sheath and coconut natural latex, with coconut sheath percentage in the proportions 15%, 25% and 35% of the total compound volume. Physical, thermal and acoustic properties of the composites were analyzed in order to obtain data on the use of viability as thermoacoustic insulation. The CP15 composites, CP25 and CP35 showed thermal conductivity 0.188 W/m.K, 0.155 W/m.K and 0.150 W/m.K, respectively. It can be applied as thermal insulation in hot systems to 200 ° C. The CP35 composite was more efficient as a thermal and acoustic insulation, providing 20% noise reduction, 31% and 34% for frequencies of 1 kHz, 2 kHz and 4 kHz, respectively. The analyzes were based on ABNT, ASTM, UL. Based on these results, it can be concluded that the eco-composite produced the hem of coconut can be used as thermal and acoustic insulation. Thus, it gives a more noble end to this material, which most often is burned or disposed of improperly in the environment.
Resumo:
DSDP cores from areas of low (Site 505) and high heat flow (Site 504 B) near the Costa Rica Rift, together with seismic profiles from the Panama Basin, have been studied to determine the relationship between: (1) carbonate content and physical and acoustic properties; and (2) carbonate content, carbonate diagenesis and acoustic stratigraphy. Except for ash and chert layers, bulk density correlates strongly and linearly with carbonate content. Velocity is uniform downcore and only small variations at a small scale are measured. Thus an abrupt change in carbonate content will cause abrupt changes in acoustic impedance and should cause reflectors that can be detected acoustically. A comparison of seismic profiler reflection records with physical properties, carbonate content and reflection coefficients indicates that the main reflectors can be identified with ash layers, diagenetic boundaries, and carbonate content variations. Diagenesis of carbonate sediments is present at Site 504B in a 260 m-thick ooze-chalk-limestone/chert sequence. These diagenetic sequences occur in areas of higher heat flow (200 mW/m**2). Seismic profiler records can be used to map the extent and depth of these diagenetic boundaries.
Resumo:
The 19 kDa carboxyl-terminal fragment of merozoite surface protein 1 (MSP119) is a major component of the invasion-inhibitory response in individual immunity to malaria. A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of malaria DNA vaccines encoding MSP119 is presented here. After condensing the plasmid DNA (pDNA) molecules with a cationic polymer polyethylenimine (PEI), a 40 kHz ultrasonic atomization frequency was used to formulate PLGA microparticles at a flow rate of 18 mL h1. High levels of gene expression and moderate cytotoxicity in COS-7 cells were achieved with the condensed pDNA at a nitrogen to phosphate (N/P) ratio of 20, thus demonstrating enhanced cellular uptake and expression of the transgene. The ability of the microparticles to convey pDNA was examined by characterizing the formulated microparticles. The microparticles displayed Z-average hydrodynamic diameters of 1.50-2.10 lm and zeta potentials of 17.8-23.2 mV. The encapsulation efficiencies were between 78 and 83%, and 76 and 85% of the embedded malaria pDNA molecules were released under physiological conditions in vitro. These results indicate that PLGA-mediated microparticles can be employed as potential gene delivery systems to antigen-presenting cells in the prevention of malaria.
Resumo:
We apply our technique of using a Rb-stabilized ring-cavity resonator to measure the frequencies of various spectral components in the 555.8-nm 1S0-->3P1 line of Yb. We determine the isotope shifts with 60 kHz precision, which is an order-of-magnitude improvement over the best previous measurement on this line. There are two overlapping transitions, 171Yb(1/2-->3/2) and 173Yb(5/2-->3/2), which we resolve by applying a magnetic field. We thus obtain the hyperfine constants in the 3P1 state of the odd isotopes with a significantly improved precision. Knowledge of isotope shifts and hyperfine structure should prove useful for high-precision calculations in Yb necessary to interpret ongoing experiments testing parity and time-reversal symmetry violation in the laws of physics.
Resumo:
We report a precise measurement of the hyperfine interval in the 2P(1/2) state of Li-7. The transition from the ground state (D-1 line) is accessed using a diode laser and the technique of saturated-absorption spectroscopy in hot Li vapor. The interval is measured by locking an acousto-optic modulator to the frequency difference between the two hyperfine peaks. The measured interval of 92.040(6) MHz is consistent with an earlier measurement reported by us using an atomic-beam spectrometer Das and Natarajan, J. Phys. B 41, 035001 (2008)]. The interval yields the magnetic dipole constant in the P-1/2 state as A = 46.047(3), which is discrepant from theoretical calculations by > 80 kHz.
Resumo:
The dielectric response of pulsed laser ablated Bi-1 Zn-5(1) Nb-0(1) O-5(7) (BZN) thin films are investigated within the temperature range of 300-660 K and frequency range of 100 Hz-100 kHz Thin film exhibited a strong dielectric relaxation behavior A sharp rise in dielectric constant of BZN thin film at high temperatures is related to disorder in canon and anion lattices Observed dielectric relaxation implies a redistribution of charges within the unit cell This phenomenon suggests that the large change in dielectric constant is due to a dynamical rise of dipolar fluctuations in the unit cell XPS spectra of BZN (A(2)B(2)O(6)O') cubic pyrochlore confirm that the relaxation corresponds to the ionic hopping among the A and O' positions of several local potential minima Barrier height for hopping is distributed between 0 and 0 94 eV The O is spectrum confirms presence of two types of oxygen in BZN thin film The disorder in charge neutralized thin film is correlated with XPS spectra (C) 2010 Elsevier Ltd All rights reserved
Resumo:
H-1 Magic Angle Spinning (MAS) NMR of layered HNbWO6 . xH(2)O (x = 1.5, 0.5) is carried out at room temperature and at various spinning speeds (1-12 kHz). Results on the fully hydrated sample (x = 1.5) are consistent with the model of diffusion of H3O+ ions within the layers. In the partially dehydrated sample (x = 0.5) an exchange between the distinctly present cage protons and H3O+ protons leads to protonic conduction.
Resumo:
To be able to carry out physical, chemical and biological investigations on a lake, one needs a thorough knowledge of the volume of water and the shape of the lake basin. Little is known about the about the morphology of the lakes in Schleswig-Holstein and its ecological consequences. For this research a 30 KHz echo sounder with sediment transceiver was used to carry out profile determinations (echo soundings). This apparatus continuously records on paper the different reflexions and absorptions of the sediment and water body in the corresponding depth. By this, acoustically noticeable layers and different densities in the sediment and 'scattering layers' in the water body due to physical, chemical and biological reasons (e.g. plans and single fish) are made visible. Result are summarised here regarding the echo soundings in Blunker See.
Resumo:
A thermo-optic variable optical attenuator based on a multimode interference coupler principle is fabricated. The propagation loss of the fabricated device is 1.6 to 3.8 dB at the wavelength range 1510 to 1610 nm, which is very near the calculated value (1.2 dB) by the finite difference beam propagation method. The maximum power consumption is 363 mW and the dynamic attenuation range is 0 to 26 dB. The response frequency of the fabricated attenuator is about 10 kHz. (C) 2003 Society of Photo-Optical Instrumentation Engineers.