909 resultados para 070301 Agro-ecosystem Function and Prediction
Resumo:
Cells usually lose adhesion and increase proliferation and migration during malignant transformation. Here, we studied how proliferation can affect the other two characteristics, which ultimately lead to invasion and metastasis. We determined the expression of ß1 integrins, as well as adhesion and migration towards laminin-1, fibronectin, collagens type I and type IV presented by LISP-1 colorectal cancer cells exposed to 2.5% dimethyl sulfoxide (DMSO), an agent capable of decreasing proliferation in this poorly differentiated colorectal cell line. Untreated cells (control), as shown by flow cytometry and monoclonal antibodies, expressed alpha2 (63.8 ± 11.3% positive cells), alpha3 (93.3 ± 7.0%), alpha5 (50.4 ± 12.0%) and alpha6 (34.1 ± 4.9%) integrins but not alpha1, alpha4, alphav or ß4. Cells adhered well to laminin-1 (73.4 ± 6.0%) and fibronectin (40.0 ± 2.0%) substrates but very little to collagens. By using blocking monoclonal antibodies, we showed that alpha2, alpha3 and alpha6 mediated laminin-1 adhesion, but neither alpha3 nor alpha5 contributed to fibronectin adherence. DMSO arrested cells at G0/G1 (control: 55.0 ± 2.4% vs DMSO: 70.7 ± 2.5%) while simultaneously reducing alpha5 (24.2 ± 19%) and alpha6 (14.3 ± 10.8%) expression as well as c-myc mRNA (7-fold), the latter shown by Northern blotting. Although the adhesion rate did not change after exposure to DMSO, alpha3 and alpha5 played a major role in laminin-1 and fibronectin adhesion, respectively. Migration towards laminin-1, which was clearly increased upon exposure to DMSO (control: 6 ± 2 cells vs DMSO: 64 ± 6 cells), was blocked by an antibody against alpha6. We conclude that the effects of DMSO on LISP-1 proliferation were accompanied by concurrent changes in the expression and function of integrins, consequently modulating adhesion/migration, and revealing a complex interplay between function/expression and the proliferative state of cells.
Resumo:
The present study compares the performance of stochastic and fuzzy models for the analysis of the relationship between clinical signs and diagnosis. Data obtained for 153 children concerning diagnosis (pneumonia, other non-pneumonia diseases, absence of disease) and seven clinical signs were divided into two samples, one for analysis and other for validation. The former was used to derive relations by multi-discriminant analysis (MDA) and by fuzzy max-min compositions (fuzzy), and the latter was used to assess the predictions drawn from each type of relation. MDA and fuzzy were closely similar in terms of prediction, with correct allocation of 75.7 to 78.3% of patients in the validation sample, and displaying only a single instance of disagreement: a patient with low level of toxemia was mistaken as not diseased by MDA and correctly taken as somehow ill by fuzzy. Concerning relations, each method provided different information, each revealing different aspects of the relations between clinical signs and diagnoses. Both methods agreed on pointing X-ray, dyspnea, and auscultation as better related with pneumonia, but only fuzzy was able to detect relations of heart rate, body temperature, toxemia and respiratory rate with pneumonia. Moreover, only fuzzy was able to detect a relationship between heart rate and absence of disease, which allowed the detection of six malnourished children whose diagnoses as healthy are, indeed, disputable. The conclusion is that even though fuzzy sets theory might not improve prediction, it certainly does enhance clinical knowledge since it detects relationships not visible to stochastic models.
Resumo:
The aim of the present study was to compare the efficacy of a novel phosphodiesterase 4 and 5 inhibitor, LASSBio596, with that of dexamethasone in a murine model of chronic asthma. Lung mechanics (airway resistance, viscoelastic pressure, and static elastance), histology, and airway and lung parenchyma remodeling (quantitative analysis of collagen and elastic fiber) were analyzed. Thirty-three BALB/c mice were randomly assigned to four groups. In the asthma group (N = 9), mice were immunized with 10 µg ovalbumin (OVA, ip) on 7 alternate days, and after day 40 they were challenged with three intratracheal instillations of 20 µg OVA at 3-day intervals. Control mice (N = 8) received saline under the same protocol. In the dexamethasone (N = 8) and LASSBio596 (N = 8) groups, the animals of the asthma group were treated with 1 mg/kg dexamethasone disodium phosphate (0.1 mL, ip) or 10 mg/kg LASSBio596 dissolved in dimethyl sulfoxide (0.2 mL, ip) 24 h before the first intratracheal instillation of OVA, for 8 days. Airway resistance, viscoelastic pressure and static elastance increased significantly in the asthma group (77, 56, and 76%, respectively) compared to the control group. The asthma group presented more intense alveolar collapse, bronchoconstriction, and eosinophil and neutrophil infiltration than the control group. Both LASSBio596 and dexamethasone inhibited the changes in lung mechanics, tissue cellularity, bronchoconstriction, as well as airway and lung parenchyma remodeling. In conclusion, LASSBio596 at a dose of 10 mg/kg effectively prevented lung mechanical and morphometrical changes and had the potential to block fibroproliferation in a BALB/c mouse model of asthma.
Resumo:
The glycosylation of glycoconjugates and the biosynthesis of polysaccharides depend on nucleotide-sugars which are the substrates for glycosyltransferases. A large proportion of these enzymes are located within the lumen of the Golgi apparatus as well as the endoplasmic reticulum, while many of the nucleotide-sugars are synthesized in the cytosol. Thus, nucleotide-sugars are translocated from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum by multiple spanning domain proteins known as nucleotide-sugar transporters (NSTs). These proteins were first identified biochemically and some of them were cloned by complementation of mutants. Genome and expressed sequence tag sequencing allowed the identification of a number of sequences that may encode for NSTs in different organisms. The functional characterization of some of these genes has shown that some of them can be highly specific in their substrate specificity while others can utilize up to three different nucleotide-sugars containing the same nucleotide. Mutations in genes encoding for NSTs can lead to changes in development in Drosophila melanogaster or Caenorhabditis elegans, as well as alterations in the infectivity of Leishmania donovani. In humans, the mutation of a GDP-fucose transporter is responsible for an impaired immune response as well as retarded growth. These results suggest that, even though there appear to be a fair number of genes encoding for NSTs, they are not functionally redundant and seem to play specific roles in glycosylation.
Resumo:
Falls are a major concern in the elderly population with chronic joint disease. To compare muscular function and functional mobility among older women with knee osteoarthritis with and without a history of falls, 15 elderly women with a history of falls (74.20 ± 4.46 years) and 15 without a history of falls (71.73 ± 4.73 years) were studied. Muscular function, at the angular speed of 60, 120, and 180º/s, was evaluated using the Biodex Isokinetic Dynamometer. The sit-to-stand task was performed using the Balance Master System and the Timed Up and Go test was used to determine functional mobility. After collection of these data, the history of falls was investigated. A statistically significant difference was detected in the time taken to transfer the center of gravity during the sit-to-stand test (means ± SD; non-fallers: 0.35 ± 0.16 s; fallers: 0.55 ± 0.32 s; P = 0.049, Student t-test) and in the Timed Up and Go test (medians; non-fallers: 10.08 s; fallers: 11.59 s; P = 0.038, Mann-Whitney U-test). The results indicated that elderly osteoarthritic women with a history of falls presented altered functional mobility and needed more time to transfer the center of gravity in the sit-to-stand test. It is important to implement strategies to guarantee a better functional performance of elderly patients to reduce fall risks.
Resumo:
Neutrophils act as first-line-of-defense cells and the reduction of their functional activity contributes to the high susceptibilityto and severity of infections in diabetes mellitus. Clinical investigations in diabetic patients and experimental studies in diabetic rats and mice clearly demonstrated consistent defects of neutrophil chemotactic, phagocytic and microbicidal activities. Other alterations that have been reported to occur during inflammation in diabetes mellitus include: decreased microvascular responses to inflammatory mediators such as histamine and bradykinin, reduced protein leakage and edema formation, reduced mast cell degranulation, impairment of neutrophil adhesionto the endothelium and migration to the site of inflammation, production of reactive oxygen species and reduced release of cytokines and prostaglandin by neutrophils, increased leukocyte apoptosis, and reduction in lymph node retention capacity. Since neutrophil function requires energy, metabolic changes (i.e., glycolytic and glutaminolytic pathways) may be involved in the reduction of neutrophil function observed in diabetic states. Metabolic routes by which hyperglycemia is linked to neutrophil dysfunction include the advanced protein glycosylation reaction, the polyol pathway, oxygen-free radical formation, the nitric oxide-cyclic guanosine-3'-5'monophosphate pathway, and the glycolytic and glutaminolytic pathways. Lowering of blood glucose levels by insulin treatment of diabetic patients or experimental animals has been reported to have significant correlation with improvement of neutrophil functional activity. Therefore, changes might be primarily linked to a continuing insulin deficiency or to secondary hyperglycemia occurring in the diabetic individual. Accordingly, effective control with insulin treatment is likely to be relevant during infection in diabetic patients.
Resumo:
The biostimulating effect of laser radiation has been observed in many areas of Medicine. However, there are still several questions to be answered, among them the importance of light coherence in the stimulatory process. In the present study, we used light-emitting diodes (LED) to promote the stimulation of liver regeneration after partial hepatectomy in rats. Fourteen male Wistar rats weighing 200-250 g were submitted to partial hepatectomy (70%) followed by LED light irradiation (630 nm) of the remaining part of the liver at two doses, i.e., 10 (N = 7) and 140 (N = 7) J/cm². A group irradiated with laser, 590 nm (N = 7, 15 J/cm²) was performed for the study of proliferating cell nuclear antigen-labeling index. Data are reported as mean ± SEM. Statistical comparisons of the groups were performed by analysis of variance for parametric measurements followed by the Bonferroni post-test, with the level of significance set at P < 0.05. Respiratory mitochondrial activity was increased in the irradiated groups (states 3 and 4; P < 0.05), with better results for the group exposed to the lower LED dose (10 J/cm²). The proliferating cell nuclear antigen-labeling index, by immunohistochemical staining, was similar for both LED-exposed groups (P > 0.05) and higher than for the control group (P < 0.05). The cell proliferation index obtained with LED and laser were similar (P > 0.05). In conclusion, the present results suggest that LED irradiation promotes biological stimulatory effects during the early stage of liver regeneration and that LED is as effective as laser light, independent of the coherence, divergence and cromaticity.
Resumo:
The present investigation was undertaken to study the effect of β-blockers and exercise training on cardiac structure and function, respectively, as well as overall functional capacity in a genetic model of sympathetic hyperactivity-induced heart failure in mice (α2A/α2CArKO). α2A/α2CArKO and their wild-type controls were studied for 2 months, from 3 to 5 months of age. Mice were randomly assigned to control (N = 45), carvedilol-treated (N = 29) or exercise-trained (N = 33) groups. Eight weeks of carvedilol treatment (38 mg/kg per day by gavage) or exercise training (swimming sessions of 60 min, 5 days/week) were performed. Exercise capacity was estimated using a graded treadmill protocol and HR was measured by tail cuff. Fractional shortening was evaluated by echocardiography. Cardiac structure and gastrocnemius capillary density were evaluated by light microscopy. At 3 months of age, no significant difference in fractional shortening or exercise capacity was observed between wild-type and α2A/α2CArKO mice. At 5 months of age, all α2A/α2CArKO mice displayed exercise intolerance and baseline tachycardia associated with reduced fractional shortening and gastrocnemius capillary rarefaction. In addition, α2A/ α2CArKO mice presented cardiac myocyte hypertrophy and ventricular fibrosis. Exercise training and carvedilol similarly improved fractional shortening in α2A/α2CArKO mice. The effect of exercise training was mainly associated with improved exercise tolerance and increased gastrocnemius capillary density while β-blocker therapy reduced cardiac myocyte dimension and ventricular collagen to wild-type control levels. Taken together, these data provide direct evidence for the respective beneficial effects of exercise training and carvedilol in α2A/α2CArKO mice preventing cardiac dysfunction. The different mechanisms associated with beneficial effects of exercise training and carvedilol suggest future studies associating both therapies.
Resumo:
Endothelial function (EF) plays an important role in the onset and clinical course of atherosclerosis, although its relationship with the presence and extent of coronary artery disease (CAD) has not been well defined. We evaluated EF and the ST segment response to an exercise test in patients with a broad spectrum of CAD defined by coronary angiography. Sixty-two patients submitted to diagnostic catheterization for the evaluation of chest pain or ischemia in a provocative test were divided into three groups according to the presence and severity of atherosclerotic lesions (AL): group 1: normal coronaries (N = 19); group 2: CAD with AL <70% (N = 17); group 3: CAD with AL ≥70% (N = 26). EF was evaluated by the percentage of flow-mediated dilatation (%FMD) in the brachial artery during reactive hyperemia induced by occlusion of the forearm with a pneumatic cuff for 5 min. Fifty-four patients were subjected to an exercise test. Gender and age were not significantly correlated with %FMD. EF was markedly reduced in both groups with CAD (76.5 and 73.1% vs 31.6% in group 1) and a higher frequency of ischemic alterations in the ST segment (70.8%) was observed in the group with obstructive CAD with AL ≥70% during the exercise test. Endothelial dysfunction was observed in patients with CAD, irrespective of the severity of injury. A significantly higher frequency of ischemic alterations in the ST segment was observed in the group with obstructive CAD. EF and exercise ECG differed among the three groups and may provide complementary information for the assessment of CAD.
Resumo:
The objective of the present study was to determine the prevalence of electrolyte disturbances in AIDS patients developing acute kidney injury in the hospital setting, as well as to determine whether such disturbances constitute a risk factor for nephrotoxic and ischemic injury. A prospective, observational cohort study was carried out. Hospitalized AIDS patients were evaluated for age; gender; coinfection with hepatitis; diabetes mellitus; hypertension; time since HIV seroconversion; CD4 count; HIV viral load; proteinuria; serum levels of creatinine, urea, sodium, potassium and magnesium; antiretroviral use; nephrotoxic drug use; sepsis; intensive care unit (ICU) admission, and the need for dialysis. Each of these characteristics was correlated with the development of acute kidney injury, with recovery of renal function and with survival. Fifty-four patients developed acute kidney injury: 72% were males, 59% had been HIV-infected for >5 years, 72% had CD4 counts <200 cells/mm³, 87% developed electrolyte disturbances, 33% recovered renal function, and 56% survived. ICU admission, dialysis, sepsis and hypomagnesemia were all significantly associated with nonrecovery of renal function and with mortality. Nonrecovery of renal function was significantly associated with hypomagnesemia, as was mortality in the multivariate analysis. The risks for nonrecovery of renal function and for death were 6.94 and 6.92 times greater, respectively, for patients with hypomagnesemia. In hospitalized AIDS patients, hypomagnesemia is a risk factor for nonrecovery of renal function and for in-hospital mortality. To determine whether hypomagnesemia is a determinant or simply a marker of critical illness, further studies involving magnesium supplementation in AIDS patients are warranted.
Resumo:
We investigated the contribution of the duration of overdistention (DOD) to rat bladder function and morphology and explored its possible molecular mechanisms. Bladder overdistention was induced in male Sprague-Dawley rats (200-250 g) by an infusion of saline. Forty rats were divided into 5 groups submitted to different DOD, i.e., 1, 2, 4, and 8 h, and control. Bladder function was evaluated by cystometry. Morphological changes were observed by light and transmission electron microscopy. Compared to control (44.567 ± 3.472 cmH2O), the maximum detrusor pressure of groups with 2-, 4- and 8-h DOD decreased significantly (means ± SEM): 32.774 ± 3.726, 31.321 ± 2.847, and 29.238 ± 3.724 cmH2O. With the increase of DOD, inflammatory infiltration and impairment of ultrastructure were more obvious in bladder tissue. Compared to control (1.90 ± 0.77), the apoptotic indexes of groups with 1-, 2-, 4-, and 8-h DOD increased significantly (6.47 ± 2.10, 10.66 ± 1.97, 13.91 ± 2.69, and 18.33 ± 3.28%). Compared to control (0.147 ± 0.031/0.234 ± 0.038 caspase 3/β-actin and Bax/Bcl-2 ratios), both caspase 3/β-actin and Bax/Bcl-2 ratios of 1-, 2-, 4-, and 8-h DOD increased significantly (0.292 ± 0.037/0.508 ± 0.174, 0.723 ± 0.173/1.745 ± 0.471, 1.104 ± 0.245/4.000 ± 1.048, and 1.345 ± 0.409/8.398 ± 3.332). DOD plays an important role in impairment of vesical function and structure. With DOD, pro-apoptotic factors increase and anti-apoptotic factors decrease, possibly contributing to the functional deterioration and morphological changes of the bladder.
Resumo:
The objective of the present study was to investigate the effects of eccentric training on the activity of mitochondrial respiratory chain enzymes, oxidative stress, muscle damage, and inflammation of skeletal muscle. Eighteen male mice (CF1) weighing 30-35 g were randomly divided into 3 groups (N = 6): untrained, trained eccentric running (16°; TER), and trained running (0°) (TR), and were submitted to an 8-week training program. TER increased muscle oxidative capacity (succinate dehydrogenase and complexes I and II) in a manner similar to TR, and TER did not decrease oxidative damage (xylenol and creatine phosphate) but increased antioxidant enzyme activity (superoxide dismutase and catalase) similar to TR. Muscle damage (creatine kinase) and inflammation (myeloperoxidase) were not reduced by TER. In conclusion, we suggest that TER improves mitochondrial function but does not reduce oxidative stress, muscle damage, or inflammation induced by eccentric contractions.
Resumo:
The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function.
Resumo:
Interest in the role of extracellular vesicles in various diseases including cancer has been increasing. Extracellular vesicles include microvesicles, exosomes, apoptotic bodies, and argosomes, and are classified by size, content, synthesis, and function. Currently, the best characterized are exosomes and microvesicles. Exosomes are small vesicles (40-100 nm) involved in intercellular communication regardless of the distance between them. They are found in various biological fluids such as plasma, serum, and breast milk, and are formed from multivesicular bodies through the inward budding of the endosome membrane. Microvesicles are 100-1000 nm vesicles released from the cell by the outward budding of the plasma membrane. The therapeutic potential of extracellular vesicles is very broad, with applications including a route of drug delivery and as biomarkers for diagnosis. Extracellular vesicles extracted from stem cells may be used for treatment of many diseases including kidney diseases. This review highlights mechanisms of synthesis and function, and the potential uses of well-characterized extracellular vesicles, mainly exosomes, with a special focus on renal functions and diseases.
Resumo:
The objective of this study was to evaluate cardiorespiratory fitness and pulmonary function and the relationship with metabolic variables and C-reactive protein (CRP) plasma levels in individuals with diabetes mellitus (DM). Nineteen men with diabetes and 19 age- and gender-matched control subjects were studied. All individuals were given incremental cardiopulmonary exercise and pulmonary function tests. In the exercise test, maximal workload (158.3±22.3vs 135.1±25.2, P=0.005), peak heart rate (HRpeak: 149±12 vs 139±10, P=0.009), peak oxygen uptake (VO2peak: 24.2±3.2 vs18.9±2.8, P<0.001), and anaerobic threshold (VO2VT: 14.1±3.4 vs 12.2±2.2, P=0.04) were significantly lower in individuals with diabetes than in control subjects. Pulmonary function test parameters, blood pressure, lipid profile (triglycerides, HDL, LDL, and total cholesterol), and CRP plasma levels were not different in control subjects and individuals with DM. No correlations were observed between hemoglobin A1C (HbA1c), CRP and pulmonary function test and cardiopulmonary exercise test performance. In conclusion, the results demonstrate that nonsmoking individuals with DM have decreased cardiorespiratory fitness that is not correlated with resting pulmonary function parameters, HbA1c, and CRP plasma levels.