879 resultados para 020603 Quantum Information Computation and Communication
Resumo:
Œuvre dédiée à Alioune Camara; merci au Prof. Denis Dougnon de l’Université de Bamako pour le parrainage
Resumo:
Œuvre dédiée à Alioune Camara; merci au Prof. Denis Dougnon de l’Université de Bamako pour le parrainage
Resumo:
The preset study adopted an intergroup approach to information sharing and communication in three organisational samples during change. In Study 1, employees from a public hospital (N = 142) completed a survey measuring perceptions of organisational communication and strength of identification with the work unit and the organisation as a whole. Consistent with predictions, team members rated communication from double ingroup members (same work unit/same occupational group) more favourably than communication from partial group members (same work unit/different occupational group). Also as predicted, work unit identification was related to favourable ratings of work unit communication across occupational groups, whereas occupational identification was related to favourable ratings of work unit communication within occupational groups. In Study 2, strength of identification with three organisational groups was associated with positive ratings of communication among employees from the same public hospital (N = 189) and a military organisation (N = 2119). Based on these results, intergroup strategies for the management of information sharing and organisational communication during change are discussed.
Resumo:
Examples of recent research into adolescent risk behaviors from a variety of disciplines and methodologies, denoting the range of researchers interested in this area and whose interest in communication and language articulates and exemplifies the extent of the field, are surveyed in this article.
Resumo:
MSc. Dissertation presented at Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa to obtain the Master degree in Electrical and Computer Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Today, information technology is strategically important to the goals and aspirations of the business enterprises, government and high-level education institutions – university. Universities are facing new challenges with the emerging global economy characterized by the importance of providing faster communication services and improving the productivity and effectiveness of individuals. New challenges such as provides an information network that supports the demands and diversification of university issues. A new network architecture, which is a set of design principles for build a network, is one of the pillar bases. It is the cornerstone that enables the university’s faculty, researchers, students, administrators, and staff to discover, learn, reach out, and serve society. This thesis focuses on the network architecture definitions and fundamental components. Three most important characteristics of high-quality architecture are that: it’s open network architecture; it’s service-oriented characteristics and is an IP network based on packets. There are four important components in the architecture, which are: Services and Network Management, Network Control, Core Switching and Edge Access. The theoretical contribution of this study is a reference model Architecture of University Campus Network that can be followed or adapted to build a robust yet flexible network that respond next generation requirements. The results found are relevant to provide an important complete reference guide to the process of building campus network which nowadays play a very important role. Respectively, the research gives university networks a structured modular model that is reliable, robust and can easily grow.
Resumo:
Résumé La cryptographie classique est basée sur des concepts mathématiques dont la sécurité dépend de la complexité du calcul de l'inverse des fonctions. Ce type de chiffrement est à la merci de la puissance de calcul des ordinateurs ainsi que la découverte d'algorithme permettant le calcul des inverses de certaines fonctions mathématiques en un temps «raisonnable ». L'utilisation d'un procédé dont la sécurité est scientifiquement prouvée s'avère donc indispensable surtout les échanges critiques (systèmes bancaires, gouvernements,...). La cryptographie quantique répond à ce besoin. En effet, sa sécurité est basée sur des lois de la physique quantique lui assurant un fonctionnement inconditionnellement sécurisé. Toutefois, l'application et l'intégration de la cryptographie quantique sont un souci pour les développeurs de ce type de solution. Cette thèse justifie la nécessité de l'utilisation de la cryptographie quantique. Elle montre que le coût engendré par le déploiement de cette solution est justifié. Elle propose un mécanisme simple et réalisable d'intégration de la cryptographie quantique dans des protocoles de communication largement utilisés comme les protocoles PPP, IPSec et le protocole 802.1li. Des scénarios d'application illustrent la faisabilité de ces solutions. Une méthodologie d'évaluation, selon les critères communs, des solutions basées sur la cryptographie quantique est également proposée dans ce document. Abstract Classical cryptography is based on mathematical functions. The robustness of a cryptosystem essentially depends on the difficulty of computing the inverse of its one-way function. There is no mathematical proof that establishes whether it is impossible to find the inverse of a given one-way function. Therefore, it is mandatory to use a cryptosystem whose security is scientifically proven (especially for banking, governments, etc.). On the other hand, the security of quantum cryptography can be formally demonstrated. In fact, its security is based on the laws of physics that assure the unconditional security. How is it possible to use and integrate quantum cryptography into existing solutions? This thesis proposes a method to integrate quantum cryptography into existing communication protocols like PPP, IPSec and the 802.l1i protocol. It sketches out some possible scenarios in order to prove the feasibility and to estimate the cost of such scenarios. Directives and checkpoints are given to help in certifying quantum cryptography solutions according to Common Criteria.
Resumo:
We propose a criterion for the validity of semiclassical gravity (SCG) which is based on the stability of the solutions of SCG with respect to quantum metric fluctuations. We pay special attention to the two-point quantum correlation functions for the metric perturbations, which contain both intrinsic and induced fluctuations. These fluctuations can be described by the Einstein-Langevin equation obtained in the framework of stochastic gravity. Specifically, the Einstein-Langevin equation yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. The homogeneous solutions of the Einstein-Langevin equation are equivalent to the solutions of the perturbed semiclassical equation, which describe the evolution of the expectation value of the quantum metric perturbations. The information on the intrinsic fluctuations, which are connected to the initial fluctuations of the metric perturbations, can also be retrieved entirely from the homogeneous solutions. However, the induced metric fluctuations proportional to the noise kernel can only be obtained from the Einstein-Langevin equation (the inhomogeneous term). These equations exhibit runaway solutions with exponential instabilities. A detailed discussion about different methods to deal with these instabilities is given. We illustrate our criterion by showing explicitly that flat space is stable and a description based on SCG is a valid approximation in that case.
Resumo:
The Wigner higher order moment spectra (WHOS)are defined as extensions of the Wigner-Ville distribution (WD)to higher order moment spectra domains. A general class oftime-frequency higher order moment spectra is also defined interms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to theproperties of WHOS which are, in fact, extensions of the properties of the WD. Discrete time and frequency Wigner higherorder moment spectra (DTF-WHOS) distributions are introduced for signal processing applications and are shown to beimplemented with two FFT-based algorithms. One applicationis presented where the Wigner bispectrum (WB), which is aWHOS in the third-order moment domain, is utilized for thedetection of transient signals embedded in noise. The WB iscompared with the WD in terms of simulation examples andanalysis of real sonar data. It is shown that better detectionschemes can be derived, in low signal-to-noise ratio, when theWB is applied.
Resumo:
This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.
Resumo:
Fast changing environment sets pressure on firms to share large amount of information with their customers and suppliers. The terms information integration and information sharing are essential for facilitating a smooth flow of information throughout the supply chain, and the terms are used interchangeably in research literature. By integrating and sharing information, firms want to improve their logistics performance. Firms share information with their suppliers and customers by using traditional communication methods (telephone, fax, Email, written and face-to-face contacts) and by using advanced or modern communication methods such as electronic data interchange (EDI), enterprise resource planning (ERP), web-based procurement systems, electronic trading systems and web portals. Adopting new ways of using IT is one important resource for staying competitive on the rapidly changing market (Saeed et al. 2005, 387), and an information system that provides people the information they need for performing their work, will support company performance (Boddy et al. 2005, 26). The purpose of this research has been to test and understand the relationship between information integration with key suppliers and/or customers and a firm’s logistics performance, especially when information technology (IT) and information systems (IS) are used for integrating information. Quantitative and qualitative research methods have been used to perform the research. Special attention has been paid to the scope, level and direction of information integration (Van Donk & van der Vaart 2005a). In addition, the four elements of integration (Jahre & Fabbe-Costes 2008) are closely tied to the frame of reference. The elements are integration of flows, integration of processes and activities, integration of information technologies and systems and integration of actors. The study found that information integration has a low positive relationship to operational performance and a medium positive relationship to strategic performance. The potential performance improvements found in this study vary from efficiency, delivery and quality improvements (operational) to profit, profitability or customer satisfaction improvements (strategic). The results indicate that although information integration has an impact on a firm’s logistics performance, all performance improvements have not been achieved. This study also found that the use of IT and IS have a mediocre positive relationship to information integration. Almost all case companies agreed on that the use of IT and IS could facilitate information integration and improve their logistics performance. The case companies felt that an implementation of a web portal or a data bank would benefit them - enhance their performance and increase information integration.
Resumo:
La théorie de l'information quantique étudie les limites fondamentales qu'imposent les lois de la physique sur les tâches de traitement de données comme la compression et la transmission de données sur un canal bruité. Cette thèse présente des techniques générales permettant de résoudre plusieurs problèmes fondamentaux de la théorie de l'information quantique dans un seul et même cadre. Le théorème central de cette thèse énonce l'existence d'un protocole permettant de transmettre des données quantiques que le receveur connaît déjà partiellement à l'aide d'une seule utilisation d'un canal quantique bruité. Ce théorème a de plus comme corollaires immédiats plusieurs théorèmes centraux de la théorie de l'information quantique. Les chapitres suivants utilisent ce théorème pour prouver l'existence de nouveaux protocoles pour deux autres types de canaux quantiques, soit les canaux de diffusion quantiques et les canaux quantiques avec information supplémentaire fournie au transmetteur. Ces protocoles traitent aussi de la transmission de données quantiques partiellement connues du receveur à l'aide d'une seule utilisation du canal, et ont comme corollaires des versions asymptotiques avec et sans intrication auxiliaire. Les versions asymptotiques avec intrication auxiliaire peuvent, dans les deux cas, être considérées comme des versions quantiques des meilleurs théorèmes de codage connus pour les versions classiques de ces problèmes. Le dernier chapitre traite d'un phénomène purement quantique appelé verrouillage: il est possible d'encoder un message classique dans un état quantique de sorte qu'en lui enlevant un sous-système de taille logarithmique par rapport à sa taille totale, on puisse s'assurer qu'aucune mesure ne puisse avoir de corrélation significative avec le message. Le message se trouve donc «verrouillé» par une clé de taille logarithmique. Cette thèse présente le premier protocole de verrouillage dont le critère de succès est que la distance trace entre la distribution jointe du message et du résultat de la mesure et le produit de leur marginales soit suffisamment petite.
Resumo:
This article reviews current technological developments, particularly Peer-to-Peer technologies and Distributed Data Systems, and their value to community memory projects, particularly those concerned with the preservation of the cultural, literary and administrative data of cultures which have suffered genocide or are at risk of genocide. It draws attention to the comparatively good representation online of genocide denial groups and changes in the technological strategies of holocaust denial and other far-right groups. It draws on the author's work in providing IT support for a UK-based Non-Governmental Organization providing support for survivors of genocide in Rwanda.