265 resultados para 0171
Resumo:
The human airway epithelium serves as structural and functional barrier against inhaled particulate antigen. Previously, we demonstrated in an in vitro epithelial barrier model that monocyte derived dendritic cells (MDDC) and monocyte derived macrophages (MDM) take up particulate antigen by building a trans-epithelial interacting network. Although the epithelial tight junction (TJ) belt was penetrated by processes of MDDC and MDM, the integrity of the epithelium was not affected. These results brought up two main questions: (1) Do MDM and MDDC exchange particles? (2) Are those cells expressing TJ proteins, which are believed to interact with the TJ belt of the epithelium to preserve the epithelial integrity? The expression of TJ and adherens junction (AJ) mRNA and proteins in MDM and MDDC monocultures was determined by RT-PCR, and immunofluorescence, respectively. Particle uptake and exchange was quantified by flow cytometry and laser scanning microscopy in co-cultures of MDM and MDDC exposed to polystyrene particles (1 μm in diameter). MDM and MDDC constantly expressed TJ and AJ mRNA and proteins. Flow cytometry analysis of MDM and MDDC co-cultures showed increased particle uptake in MDDC while MDM lost particles over time. Quantitative analysis revealed significantly higher particle uptake by MDDC in co-cultures of epithelial cells with MDM and MDDC present, compared to co-cultures containing only epithelial cells and MDDC. We conclude from these findings that MDM and MDDC express TJ and AJ proteins which could help to preserve the epithelial integrity during particle uptake and exchange across the lung epithelium.
Resumo:
The aim of our study was to analyze the neurophysiological monitoring method with regard to its potential problems during thoracic and thoracoabdominal aortic open or endovascular repair. Furthermore, preventive strategies to the main pitfalls with this method were developed.
Resumo:
M-ficolin (ficolin-1) is a complement-activating pattern-recognition molecule structurally related to mannan-binding lectin. It is produced by monocytes and neutrophils, and is found in serum. Its biological role is largely unknown. We assessed M-ficolin concentration in serum from pediatric cancer patients. The aim of this study was to explore association of M-ficolin with clinical and hematological parameters, and to investigate whether the risk of chemotherapy-related infections was related to M-ficolin concentrations in serum.
Resumo:
In this study, facilitated anastomosis using an anastomotic device was compared to conventional hand-sewn (HS) vascular anastomosis in an animal model.
Plectin interacts with the rod domain of type III intermediate filament proteins desmin and vimentin
Resumo:
Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.
Resumo:
The homeodomain-only protein (HOP) contains an atypical homeodomain which is unable to bind to DNA due to mutations in residues important for DNA binding. Recently, HOP was reported to regulate proliferation/differentiation homeostasis in different cell types. In the present study, we performed transcriptional profiling of cultured primary human keratinocytes and noted a robust induction of HOP upon calcium-induced cell differentiation. Immunohistochemistry of human skin localized HOP to the granular layer in the epidermis. Overexpression of HOP using a lentiviral vector up-regulated FLG and LOR expression during keratinocyte differentiation. Conversely, decreasing HOP expression using small interfering RNA markedly reduced the calcium-induced expression of late markers of differentiation in vitro, with the most prominent effect on profilaggrin (FLG) mRNA. Moreover, mRNA levels of profilaggrin and loricrin were downregulated in the epidermis of HOP knockout mice. Analysis of skin disorders revealed altered HOP expression in lichen planus, psoriasis and squamous cell carcinoma (SCC). Our data indicate that HOP is a novel modulator of late terminal differentiation in keratinocytes.
Resumo:
Dispersal and recruitment are central processes that shape the geographic and temporal distributions of populations of marine organisms. However, significant variability in factors such as reproductive output, larval transport, survival, and settlement success can alter the genetic identity of recruits from year to year. We designed a temporal and spatial sampling protocol to test for genetic heterogeneity among adults and recruits from multiple time points along a similar to 400 km stretch of the Oregon (USA) coastline. In total, 2824 adult and recruiting Balanus glandula were sampled between 2001 and 2008 from 9 sites spanning the Oregon coast. Consistent with previous studies, we observed high mitochondrial DNA diversity at the cytochrome oxidase I locus (884 unique haplotypes) and little to no spatial genetic population structure among the 9 sites (Phi(ST) = 0.00026, p = 0.170). However, subtle but significant temporal shifts in genetic composition were observed among year classes (Phi(ST) = 0.00071, p = 0.035), and spatial Phi(ST) varied from year to year. These temporal shifts in genetic structure were correlated with yearly differences in the strength of coastal upwelling (p = 0.002), with greater population structure observed in years with weaker upwelling. Higher levels of barnacle settlement were also observed in years with weaker upwelling (p < 0.001). These data suggest the hypothesis that low upwelling intensity maintains more local larvae close to shore, thereby shaping the genetic structure and settlement rate of recruitment year classes.
Resumo:
Background: The lectin pathway of complement activation, in particular mannose-binding lectin (MBL), has been extensively investigated over recent years. So far, studies were exclusively based on venous samples. The aim of this study was to investigate whether measurements of lectin pathway proteins obtained by capillary sampling are in agreement with venous samples. Methods: Prospective study including 31 infants that were admitted with suspected early-onset sepsis. Lectin pathway proteins were measured in simultaneously obtained capillary and venous samples. Bland–Altman plots of logarithmized results were constructed, and the mean capillary to venous ratios (ratiocap/ven) were calculated with their 95% confidence intervals (CI). Results: The agreement between capillary and venous sampling was very high for MBL (mean ratiocap/ven, 1.01; 95% CI, 0.85–1.19). Similarly, high agreement was observed for H-ficolin (mean ratiocap/ven, 1.02; 95% CI, 0.72–1.44), MASP-2 (1.04; 0.59–1.84), MASP-3 (0.96; 0.71–1.28), and MAp44 (1.01; 0.82–1.25), while the agreement was moderate for M-ficolin (mean ratiocap/ven, 0.78; 95% CI, 0.27–2.28). Conclusions: The results of this study show an excellent agreement between capillary and venous samples for most lectin pathway proteins. Except for M-ficolin, small volume capillary samples can thus be used when assessing lectin pathway proteins in neonates and young children.