936 resultados para 010501 Algebraic Structures in Mathematical Physics
Resumo:
We obtain the exact classical algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, now containing a calculable correction of order one unit lower. The relation with Yangians and the role of the results in the context of Lie-Poisson algebras are also discussed.
Resumo:
New data on floral morphology, development, and vasculature in two Brazilian genera of the monocot family Velloziaceae (Pandanales) are used to explore the homologies of their unusual floral structures, especially the corona of Barbacenia and the corona-like appendages and multiple stamens of some Vellozia species. All Velloziaceae have epigynous flowers. Some species of Vellozia are polyandrous, and stamen number can be variable within species. In Vellozia jolyi, there is a single stamen opposite each sepal and a stamen fascicle (of three secondary stamens) opposite each petal. Each stamen possesses a single vascular bundle, and these are united into a single aggregate bundle in proximal regions of the fascicle. Stamens mature centripetally within each fascicle. The coronal appendages of both genera are closely associated with the stamens, but they share some vasculature with the tepals and develop late in ontogeny. The coronal organs cannot readily be homologized with any of the typical floral organs, but they show partial homology with both tepals and stamens. They are most readily interpreted as a late elaboration of the region between the petals and stamens associated with epigyny and the hypanthium. © 2010 by The University of Chicago. All rights reserved.
Resumo:
Bats present unique features among mammals with respect to reproduction, and although neotropical bats do not have a hibernation period, many of their reproductive characteristics vary seasonally and interspecifically. Thus, this work aimed to examine the reproductive structures of 18 species belonging to five families of Brazilian bats. The gross anatomy of the testes varied little; however, the epididymis of Emballonuridae and Vespertilionidae showed exceptional structures with a large elongation of the caudal region. We observed a wide variation in the positioning of the testes: Phyllostomidae and Noctilionidae presented external testes; Emballonuridae and Molossidae presented migratory testes that may be in intra-abdominal or external positions; and Vespertilionidae displayed scrotal testes. In the histological evaluation, we observed a different pattern in vespertilionid species, with testicular regression and sperm retention/storage in the cauda epididymis in the five species analyzed. Similar testicular regression was observed in Molossops temminckii; however, sperm retention/storage was not observed in this species. These data suggest that although the species analyzed are tropical species that do not present a prolonged period of torpor (hibernation), they still maintain a period of seminiferous tubule regression and sperm storage very similar to that observed in hibernating bats. © 2012 Wiley Periodicals, Inc.
Resumo:
Four-fermion operators have been utilized in the past to link the quarkexchange processes in the interaction of hadrons with the effective mesonexchange amplitudes. In this paper, we apply the similar idea of Fierz rearrangement to the electromagnetic processes and focus on the electromagnetic form factors of nucleon and electron. We explain the motivation of using four-fermion operators and discuss the advantage of this method in computing electromagnetic processes.
Resumo:
This paper deals with topology optimization in plane elastic-linear problems considering the influence of the self weight in efforts in structural elements. For this purpose it is used a numerical technique called SESO (Smooth ESO), which is based on the procedure for progressive decrease of the inefficient stiffness element contribution at lower stresses until he has no more influence. The SESO is applied with the finite element method and is utilized a triangular finite element and high order. This paper extends the technique SESO for application its self weight where the program, in computing the volume and specific weight, automatically generates a concentrated equivalent force to each node of the element. The evaluation is finalized with the definition of a model of strut-and-tie resulting in regions of stress concentration. Examples are presented with optimum topology structures obtaining optimal settings. (C) 2012 CIMNE (Universitat Politecnica de Catalunya). Published by Elsevier Espana, S.L.U. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order that confinement should survive, light quarks inside hadrons have a very high acceleration and will feel a thermal bath with an Unruh temperature near 137 MeV. We show that this temperature is consistent with the experimentally observed departure from the Gottfried sum rule for the difference of the proton and neutron structure functions in deep inelastic electron scattering.
Resumo:
Although cestodes of the genus Echinococcus have been much studied in the past, there is need for an evaluation of these morphological characters used as the basis for species differentiation. The generous cooperation of other investigators in providing necessary foreign material and the results of nearly five years of field work in Alaska make possible such a study. It is the purpose of the paper to evaluate morphological characters used at the species level to differentiate these cestodes, and to review the status of species currently considered valid.
Resumo:
Male secondary sexual characters in Lepidoptera may be present or absent in species that otherwise appear to be closely related, an observation that has led to differences of opinion over the taxonomic usefulness of these structures above the species level. An evolutionary issue raised by this debate is whether male secondary sexual characters (1) can be regained after being lost evolutionarily, (2) are not lost after being evolved, or (3) are 'switched on and off' by genes that regulate development. A second evolutionary issue is the conditions under which male secondary sexual characters might be lost or gained evolutionarily. Because these structures are thought to promote species recognition, theory predicts evolutionary losses to be most likely in allopatry; evolutionary gains to be most likely during the process of secondarily establishing sympatry or during sympatric speciation. We updated the species-level taxonomy of the brilliant emerald winged Neotropical lycaenid butterfly genus Arcas and performed an analysis of phylogenetic relations among species to assess these evolutionary issues. We morphologically detail a scent pouch on the ventral hindwing of Areas and report that six species possess the pouch with androconia, one possesses the pouch without androconia, and the remaining two species have neither pouch nor androconia. In addition, eight Areas species have a morphologically species-specific male forewing scent pad, and one lacks a scent pad. This variation appears to be the result of three evolutionary losses and no gains of male secondary sexual organs. The four Areas species lacking a scent pouch or a scent pad are allopatric with their closest phylogenetic relatives while four of five with both of these structures are sympatric. Although Arcas is a small genus, these results are significantly more extreme than predicted by chance. For taxonomy, this study provides a rationale for the evolutionary loss of male secondary sexual structures and suggests that their absence, but itself, does not indicate a lack of relationship above the species level.
Resumo:
Transplantation brings hope for many patients. A multidisciplinary approach on this field aims at creating biologically functional tissues to be used as implants and prostheses. The freeze-drying process allows the fundamental properties of these materials to be preserved, making future manipulation and storage easier. Optimizing a freeze-drying cycle is of great importance since it aims at reducing process costs while increasing product quality of this time-and-energy-consuming process. Mathematical modeling comes as a tool to help a better understanding of the process variables behavior and consequently it helps optimization studies. Freeze-drying microscopy is a technique usually applied to determine critical temperatures of liquid formulations. It has been used in this work to determine the sublimation rates of a biological tissue freeze-drying. The sublimation rates were measured from the speed of the moving interface between the dried and the frozen layer under 21.33, 42.66 and 63.99 Pa. The studied variables were used in a theoretical model to simulate various temperature profiles of the freeze-drying process. Good agreement between the experimental and the simulated results was found.
Resumo:
Body size influences wing shape and associated muscles in flying animals which is a conspicuous phenomenon in insects, given their wide range in body size. Despite the significance of this, to date, no detailed study has been conducted across a group of species with similar biology allowing a look at specific relationship between body size and flying structures. Neotropical social vespids are a model group to study this problem as they are strong predators that rely heavily on flight while exhibiting a wide range in body size. In this paper we describe the variation in both wing shape, as wing planform, and mesosoma muscle size along the body size gradient of the Neotropical social wasps and discuss the potential factors affecting these changes. Analyses of 56 species were conducted using geometric morphometrics for the wings and lineal morphometrics for the body; independent contrast method regressions were used to correct for the phylogenetic effect. Smaller vespid species exhibit rounded wings, veins that are more concentrated in the proximal region, larger stigmata and the mesosoma is proportionally larger than in larger species. Meanwhile, larger species have more elongated wings, more distally extended venation, smaller stigmata and a proportionally smaller mesosoma. The differences in wing shape and other traits could be related to differences in flight demands caused by smaller and larger body sizes. Species around the extremes of body size distribution may invest more in flight muscle mass than species of intermediate sizes.