973 resultados para 0.5N HCl soluble
Resumo:
The wettability of newly developed Sn-2.8Ag-0.5Cu-1.0Bi lead-free solder on Cu and Ni substrates was assessed through the wetting balance tests. The wettability assessment parameters such as contact angle (ϑc) and maximum wetting force (Fw) were documented for three solder bath temperatures with three commercial fluxes, namely, no-clean (NC), nonactivated (R), and water-soluble organic acid flux (WS). It was found that the lead-free Sn-2.8Ag-0.5Cu-1.0Bi solder exhibited less wetting force, i.e., poorer wettability, than the conventional Sn-37Pb solder for all flux types and solder bath temperatures. The wettability of Sn-2.8Ag-0.5Cu-1.0Bi lead-free solder on Cu substrate was much higher than that on Ni substrate. Nonwetting for Sn-2.8Ag-0.5Cu-1.0Bi and Sn-Pb solders on Ni substrate occurred when R-type flux was used. A model was built and simulations were performed for the wetting balance test. The simulation results were found very close to the experimental results. It was also observed that larger values of immersion depth resulted in a decrease of the wetting force and corresponding meniscus height, whereas the increase in substrate perimeter enhanced the wettability. The wetting reactions between the solder and Cu/Ni substrates were also investigated, and it was found that Cu atoms diffused into the solder through the intermetallic compounds (IMCs) much faster than did the Ni atoms. Rapid formation of IMCs inhibited the wettability of Sn-2.8Ag-0.5Cu-1.0Bi solder compared to the Sn-Pb solder.
Resumo:
Electronic packaging industries are now in great challenge to find a suitable lead-free solder as an interconnection material to replace the conventional SnPb solders. Many solders such as SnCu, SnAg, SnAgCu, SnZn, SnBi have already been proposed as the replacement but none of them has reached the physical and metallurgical properties similar to the SnPb solder. However, wetting is one of the basic problems that make the lead-free solder inferior as compared to the SnPb solder. Therefore, alloying with the help of third, fourth or fifth element is the researchers' interest to improve the wetting behavior of lead-free solders. This paper describes the comparative wetting behavior of Sn-0.7Cu and Sn-0.7Cu-0.3Ni solders on Cu and Ni substrates. Wetting balance tests were performed to assess the wetting behaviors. Three different commercial fluxes namely no-clean (NC), non-activated (R) and water soluble organic acid (WS)fluxes were used to assess the wettability for three solder bath temperatures. It was found that Sn0.7Cu-03Ni solder exhibits better wettability on Cu substrate for NC and WS fluxes whereas reverse results were found for R-type flux. In the case of Ni substrate, Sn-0.7Cu-0.3Ni solder showed better wetting behavior compared to the well-known Sn-0.7Cu solder. Among the three fluxes, R-type flux showed the worst performance. Very large contact angles were documented for both solders with this flux. Higher solder bath temperature lowered the contact angles, increased the wetting forces and enhanced the wettability. Computer modeling of wetting balance test revealed that both the wetting force and meniscus height are inversely proportional to the contact angles. Modeling results also reveal that increase in solder bath depths and radiuses do not affect significantly on the wetting behavior.
Resumo:
The amount of atmospheric hydrogen chloride (HCl) within fire enclosures produced from the combustion of chloride-based materials tends to decay as the fire effluent is transported through the enclosure due to mixing with fresh air and absorption by solids. This paper describes an HCl decay model, typically used in zone models, which has been modified and applied to a computational fluid dynamics (CFD)-based fire field model. While the modified model still makes use of some empirical formulations to represent the deposition mechanisms, these have been reduced from the original three to two through the use of the CFD framework. Furthermore, the effect of HCl flow to the wall surfaces on the time to reach equilibrium between HCl in the boundary layer and on wall surfaces is addressed by the modified model. Simulation results using the modified HCl decay model are compared with data from three experiments. The model is found to be able to reproduce the experimental trends and the predicted HCl levels are in good agreement with measured values
Resumo:
Comparative wetting behavior of Sn-0.7Cu and Sn-0.7Cu-0.3Ni solders on Cu and Ni substrates were assessed through the wetting balance test. No-clean (NC), non-activated (R) and water soluble organic acid (WS) fluxes were used to assess the wetting behavior for three different solder bath temperatures of 255, 275 and 295 °C. Experimental results unveiled that adding of 0.3 wt% Ni into Sn-0.7Cu solder can improve the wetting on Cu substrate when NC and WS fluxes are used. However, such addition of Ni did not improve the wetting of Sn-0.7Cu solder for R-type flux. In the case of Ni substrate, addition of Ni helped to improve the wetting for all three types of fluxes as higher wetting forces were documented for Sn-0.7Cu-0.3Ni solder compared to the Sn-0.7Cu solder. Among the fluxes, worst performance was observed for R-type flux. Very large contact angles were recorded for both solders with this kind of flux. Experimental results also revealed that higher solder bath temperature played an important role to lower the contact angle, to increase the wetting force and to enhance the wetting. Computer modeling of wetting balance test also revealed that both the wetting force and meniscus height are inversely proportional to the contact angles. Besides, solder bath depth and radius do not affect significantly on the wetting behavior.
Resumo:
The particle size characteristics and encapsulation efficiency of microparticles prepared using triglyceride materials and loaded with two model water-soluble drugs were evaluated. Two emulsification procedures based on o/w and w/o/w methodologies were compared to a novel spray congealing procedure. After extensive modification of both emulsification methods, encapsulation efficiencies of 13.04% tetracycline HCl and 11.27% lidocaine HCl were achievable in a Witepsol (R)-based microparticle. This compares to much improved encapsulation efficiencies close to 100% for the spray congealing method, which was shown to produce spherical particles of similar to 58 mu m. Drug release studies from a Witepsol (R) formulation loaded with lidocaine HCl showed a temperature-dependent release mechanism, which displayed diffusion-controlled kinetics at temperatures similar to 25 degrees C, but exhibited almost immediate release when triggered using temperatures close to that of skin. Therefore, such a system may find application in topical semi-solid formulations, where a temperature-induced burst release is preferred.
Resumo:
Background: In asthma there is increased expression of the Th2-type cytokine interleukin-4 (IL-4). IL-4 is important in immunoglobulin isotype switching to immunoglobulin E and adhesion of eosinophils to endothelium.
Objectives: We hypothesized that levels of IL-4 in bronchoalveolar lavage (BAL) fluid would be increased in stable, atopic asthmatic children compared with controls and that levels of its physiologic inhibitor IL-4 soluble receptor α (IL-4sRα) would be correspondingly decreased.
Methods: One hundred sixteen children attending a children's hospital for elective surgery were recruited. A nonbronchoscopic BAL was performed, and IL-4 and IL-4sRα were measured in the BAL supernatants.
Results: There was no significant difference in IL-4 concentrations between atopic asthmatic children, atopic normal controls, and nonatopic normal controls [0.13 pg/mL (0.13 to 0.87) vs 0.13 pg/mL (0.13 to 0.41) vs 0.13 pg/mL (0.13 to 0.5), P = 0.65]. IL-4sRα levels were significantly increased in asthmatic patients compared with atopic controls [6.4 pg/mL (5.0 to 25.5) vs 5.0 pg/mL (5.0 to 9.9), P = 0.018], but not when compared with the nonatopic controls [5.2 pg/mL (5.0 to 10.6), P = 0.19].
Conclusions: Contrary to expectation, IL-4sRα levels are increased in BAL from stable asthmatic children compared with nonatopic controls, and we speculate that IL-4sRα is released by inflammatory cells in the airways to limit the proinflammatory effects of IL-4.
Resumo:
Objective Increased advanced glycation end-products (AGEs) and their soluble receptors (sRAGE) have been implicated in the pathogenesis of pre-eclampsia (PE). However, this association has not been elucidated in pregnancies complicated by diabetes. We aimed to investigate the serum levels of these factors in pregnant women with Type 1 diabetes mellitus (T1DM), a condition associated with a four-fold increase in PE. Design Prospective study in women with T1DM at 12.2 ± 1.9, 21.6 ± 1.5 and 31.5 ± 1.7 weeks of gestation [mean ± standard deviation (SD); no overlap] before PE onset. Setting Antenatal clinics. Population Pregnant women with T1DM (n = 118; 26 developed PE) and healthy nondiabetic pregnant controls (n = 21). Methods Maternal serum levels of sRAGE (total circulating pool), N -(carboxymethyl)lysine (CML), hydroimidazolone (methylglyoxal-modified proteins) and total AGEs were measured by immunoassays. Main outcome measures Serum sRAGE and AGEs in pregnant women with T1DM who subsequently developed PE (DM PE+) versus those who remained normotensive (DM PE-). Results In DM PE+ versus DM PE-, sRAGE was significantly lower in the first and second trimesters, prior to the clinical manifestation of PE (P <0.05). Further, reflecting the net sRAGE scavenger capacity, sRAGE:hydroimidazolone was significantly lower in the second trimester (P <0.05) and sRAGE:AGE and sRAGE:CML tended to be lower in the first trimester (P <0.1) in women with T1DM who subsequently developed PE versus those who did not. These conclusions persisted after adjusting for prandial status, glycated haemoglobin (HbA1c), duration of diabetes, parity and mean arterial pressure as covariates. Conclusions In the early stages of pregnancy, lower circulating sRAGE levels, and the ratio of sRAGE to AGEs, may be associated with the subsequent development of PE in women with T1DM. © 2012 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2012 RCOG.
Resumo:
PURPOSE: To evaluate serum soluble Flt-1 (sFlt-1) in age-related degeneration (AMD) patients.
DESIGN: Case control study.
METHODS: Fifty-six non-AMD participants, fifty-three early AMD patients and ninety-seven neovascular AMD patients from Belfast in Northern Ireland. Serum samples were collected from each patient. Serum sFlt-1 was measured by human sVEGFR1/sFlt-1 ELISA kit. The results were analyzed by Excel and SPSS.
RESULTS: Serum sFlt-1 concentration of non-AMD, early AMD, and neovascular AMD were 90.8±2.9 pg/mL (±SEM), 88.2±2.6 pg/mL and 79.9±2.2 pg/mL. sFlt-1 from neovascular AMD patients was significantly decreased compared to non-AMD and early AMD patients (ANOVA, p<0.01). For each 10 point increase in sFlt-1, the odds for having neovascular AMD compared with non-AMD and neovascular AMD decreases by 27.8% OR=0.722 (95% CI: 0.588-0.888, p=0.002) and 27.0% OR=0.730 (95% CI: 0.594-0.898, p=0.003), respectively. In patients over 73 years of age, serum sFlt-1 <80 pg/mL was associated with a >6-fold higher risk of neovascular AMD.
CONCLUSIONS: Reduced serum sFlt-1 differentiates those patients with neovascular AMD from both early AMD and non-AMD participants. In those aged over 73, serum sFlt <80 pg/mL seems to indicate a particularly high risk of neovascular AMD. Our results indicate serum sFlt-1 could be a biomarker for development of neovascular AMD.
Resumo:
The impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here we show that Hg(0) beads interact with soil or manganese oxide solids and x-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that after reacting with a composite soil, > 20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, > 700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.
Resumo:
This investigation focused on the development, test and validation of methodologies for mercury fractionation and speciation in soil and sediment. After an exhaustive review of the literature, several methods were chosen and tested in well characterised soil and sediment samples. Sequential extraction procedures that divide mercury fractions according to their mobility and potential availability in the environment were investigated. The efficiency of different solvents for fractionation of mercury was evaluated, as well as the adequacy of different analytical instruments for quantification of mercury in the extracts. Kinetic experiments to establish the equilibrium time for mercury release from soil or sediment were also performed. It was found that in the studied areas, only a very small percentage of mercury is present as mobile species and that mobility is associated to higher aluminium and manganese contents, and that high contents of organic matter and sulfur result in mercury tightly bound to the matrix. Sandy soils tend to release mercury faster that clayey soils, and therefore, texture of soil or sediment has a strong influence on the mobility of mercury. It was also understood that analytical techniques for quantification of mercury need to be further developed, with lower quantification limits, particularly for mercury quantification of less concentrated fractions: water-soluble e exchangeable. Although the results provided a better understanding of the distribution of mercury in the sample, the complexity of the procedure limits its applicability and robustness. A proficiency-testing scheme targeting total mercury determination in soil, sediment, fish and human hair was organised in order to evaluate the consistency of results obtained by different laboratories, applying their routine methods to the same test samples. Additionally, single extractions by 1 mol L-1 ammonium acetate solution, 0.1 mol L-1 HCl and 0.1 mol L-1 CaCl2, as well as extraction of the organometallic fraction were proposed for soil; the last was also suggested for sediment and fish. This study was important to update the knowledge on analytical techniques that are being used for mercury quantification, the associated problems and sources of error, and to improve and standardize mercury extraction techniques, as well as to implement effective strategies for quality control in mercury determination. A different, “non chemical-like” method for mercury species identification was developed, optimised and validated, based on the thermo-desorption of the different mercury species. Compared to conventional extraction procedures, this method has advantages: it requires little to no sample treatment; a complete identification of species present is obtained in less than two hours; mercury losses are almost neglectable; can be considered “clean”, as no residues are produced; the worldwide comparison of results obtained is easier and reliable, an important step towards the validation of the method. Therefore, the main deliverables of this PhD thesis are an improved knowledge on analytical procedures for identification and quantification of mercury species in soils and sediments, as well as a better understanding of the factors controlling the behaviour of mercury in these matrices.
Resumo:
Low levels of ionizing radiation induce two translocation responses in soybean: a reduction in photoassimilate export from leaves and a change in the distribution pattern of exported photoassimilate within the plant. In this investigation these responses have been further studied specifically to ascertain the site of radiation damage and to better understand the physiological responses observed. Experimentally the primary data was obtained from studies in which a mature trifoliate leaf of a young soybean plant (Glycine ~ L. cultivar Harosoy '63) is isolated in a closed transparent chamber and allowed to photoassimilate 14C02 for 15 minutes. This is followed by an additional 45 ~_il'1;ute period before the plant is sectl.o ne d an d 14 C-ra dl' oactl.v.l ty d eterml. ne d'l n a 11 parts. Such 14c data provides one with the magnitude and distribution pattern of translocation. Further analyses were conducted to determine the relative levels of the major photosynthetic products using the techniques of paper chromatography and autoradiography. Since differences between control and irradiated P 1 ants were not 0 b serve d l' n t h e par tl't"lo nlng 0 f 14 C between the 80% ethanol-soluble and -insoluble fractions 14 or in the relative amounts of C-products of photosynthesis, the reduction in export in irradiated plants is not likely due to reduced availability of translocatable materials. Data presented in this thesis shows that photoassimilate export was not affected by gamma radiation until a threshold dose between 2.0 and 3.0 krads was reached. It was also observed that radiation-induced damage to the export process was capable of recovery in a period of 1 to 2 hours provided high light intensity was supplied. In contrast, the distribution pattern was shown to be extremely radiosensitive with a low threshold dose between .25 and .49 krads. Although this process was also capable of recovery,lt" occurred much earlier and was followed by a secondary effect which lasted at least for the duration of the experiments. The data presented in this thesis is interpreted to suggest that the sites of radiation action for the two translocation responses are different. In regards to photoassimilate export, the site of action of ionizing radiation is the leaf, quite possibly the process of photophosphorylation which may provide energy directly for phloem loading and for membrane integrity of the phloem tissue* In regards to the pattern of distribution of exported photoassimilate, the site is likely the apical sink, possibly the result of changes of levels of endogenous hormones. By the selection of radiation exposure dose and time post-irradiation, it is possible to affect independently these two processes suggesting that each may be regulated independent of the other and involves a distinct site.
Resumo:
In the course of the ‘Livestock Revolution’, extension and intensification of, among others, ruminant livestock production systems are current phenomena, with all their positive and negative side effects. Manure, one of the inevitable secondary products of livestock rearing, is a valuable source of plant nutrients and its skillful recycling to the soil-plant interface is essential for soil fertility, nutrient - and especially phosphorus - uses efficiency and the preservation or re-establishment of environmentally sustainable farming systems, for which organic farming systems are exemplarily. Against this background, the PhD research project presented here, which was embedded in the DFG-funded Research Training Group 1397 ‘Regulation of soil organic matter and nutrient turnover in organic agriculture ’ investigated possibilities to manipulate the diets of water buffalo (Bubalus bubalis L.) so as to produce manure of desired quality for organic vegetable production, without affecting the productivity of the animals used. Consisting of two major parts, the first study (chapter 2) tested the effects of diets differing in their ratios of carbon (C) to nitrogen (N) and of structural to non-structural carbohydrates on the quality of buffalo manure under subtropical conditions in Sohar, Sultanate of Oman. To this end, two trials were conducted with twelve water buffalo heifers each, using a full Latin Square design. One control and four tests diets were examined during three subsequent 7 day experimental periods preceded each by 21 days adaptation. Diets consisted of varying proportions of Rhodes grass hay, soybean meal, wheat bran, maize, dates, and a commercial concentrate to achieve a (1) high C/N and high NDF (neutral detergent fibre)/SC (soluble carbohydrate) ratio (HH), (2) low C/N and low NDF/SC ratio (LL); (3) high C/N and low NDF/SC ratio (HL) and (4) low C/N and high NDF/SC (LH) ratio. Effects of these diets, which were offered at 1.45 times maintenance requirements of metabolizable energy, and of individual diet characteristics, respectively, on the amount and quality of faeces excreted were determined and statistically analysed. The faeces produced from diets HH and LL were further tested in a companion PhD study (Mr. K. Siegfried) concerning their nutrient release in field experiments with radish and cabbage. The second study (chapter 3) focused on the effects of the above-described experimental diets on the rate of passage of feed particles through the gastrointestinal tract of four randomly chosen animals per treatment. To this end, an oral pulse dose of 683 mg fibre particles per kg live weight marked with Ytterbium (Yb; 14.5 mg Yb g-1 organic matter) was dosed at the start of the 7 day experimental period which followed 21 days of adaptation. During the first two days a sample for Yb determination was kept from each faecal excretion, during days 3 – 7 faecal samples were kept from the first morning and the first evening defecation only. Particle passage was modelled using a one-compartment age-dependent Gamma-2 model. In both studies individual feed intake and faecal excretion were quantified throughout the experimental periods and representative samples of feeds and faeces were subjected to proximate analysis following standard protocols. In the first study the organic matter (OM) intake and excretion of LL and LH buffaloes were significantly lower than of HH and HL animals, respectively. Digestibility of N was highest in LH (88%) and lowest in HH (74%). While NDF digestibility was also highest in LH (85%) it was lowest in LL (78%). Faecal N concentration was positively correlated (P≤0.001) with N intake, and was significantly higher in faeces excreted by LL than by HH animals. Concentrations of fibre and starch in faecal OM were positively affected by the respective dietary concentrations, with NDF being highest in HH (77%) and lowest in LL (63%). The faecal C/N ratio was positively related (P≤0.001) to NDF intake; C/N ratios were 12 and 7 for HH and LL (P≤0.001), while values for HL and LH were 11.5 and 10.6 (P>0.05). The results from the second study showed that dietary N concentration was positively affecting faecal N concentration (P≤0.001), while there was a negative correlation with the faecal concentration of NDF (P≤0.05) and the faecal ratios of NDF/N and C/N (P≤0.001). Particle passage through the mixing compartment was lower (P≤0.05) for HL (0.033 h-1) than for LL (0.043 h-1) animals, while values of 0.034 h-1 and 0.038 h-1 were obtained for groups LH and HH. At 55.4 h, total tract mean retention time was significantly (P≤0.05) lower in group LL that in all other groups where these values varied between 71 h (HH) and 79 h (HL); this was probably due to the high dietary N concentration of diet LL which was negatively correlated with time of first marker appearance in faeces (r= 0.84, P≤0.001), while the dietary C concentration was negatively correlated with particle passage through the mixing compartment (r= 0.57, P≤0.05). The results suggest that manure quality of river buffalo heifers can be considerably influenced by diet composition. Despite the reportedly high fibre digestion capacity of buffalo, digestive processes did not suppress the expression of diet characteristics in the faeces. This is important when aiming at producing a specific manure quality for fertilization purposes in (organic) crop cultivation. Although there was a strong correlation between the ingestion and the faecal excretion of nitrogen, the correlation between diet and faecal C/N ratio was weak. To impact on manure mineralization, the dietary NDF and N concentrations seem to be the key control points, but modulating effects are achieved by the inclusion of starch into the diet. Within the boundaries defined by the animals’ metabolic and (re)productive requirements for energy and nutrients, diet formulation may thus take into account the abiotically and biotically determined manure turnover processes in the soil and the nutrient requirements of the crops to which the manure is applied, so as to increase nutrient use efficiency along the continuum of the feed, the animal, the soil and the crop in (organic) farming systems.
Resumo:
Dialysis and ultrafiltration were investigated as methods for measuring pH and ionic calcium and partitioning of divalent cations of milk at high temperatures. It was found that ionic calcium, pH, and total soluble divalent cations decreased as temperature increased between 20 and 80°C in both dialysates and ultrafiltration permeates. Between 90 and 110°C, ionic calcium and pH in dialysates continued to decrease as temperature increased, and the relationship between ionic calcium and temperature was linear. The permeabilities of hydrogen and calcium ions through the dialysis tubing were not changed after the tubing was sterilized for 1h at 120°C. There were no significant differences in pH and ionic calcium between dialysates from raw milk and those from a range of heat-treated milks. The effects of calcium chloride addition on pH and ionic calcium were measured in milk at 20°C and in dialysates collected at 110°C. Heat coagulation at 110°C occurred with addition of calcium chloride at 5.4mM, where pH and ionic calcium of the dialysate were 6.00 and 0.43mM, respectively. Corresponding values at 20°C were pH 6.66 and 2.10mM.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with HCL The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas, at five temperatures in the range of 296-611 K. The second-order rate constants fitted the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.51 +/- 0.06) + (1.92 +/- 0.47 kJ mol(-1))/RTIn10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range of 10-100 Torr, but showed small decreases in value of no more than 20% ( +/- 10%) at I Toff, at both the highest and lowest temperatures. The data are consistent with formation of an initial weakly bound donor-acceptor complex, which reacts by two parallel pathways. The first is by chlorine-to-silicon H-shift to make vibrationally excited chlorosilane, SiH3Cl*, which yields HSiCl by H-2 elimination from silicon. In the second pathway, the complex proceeds via H-2 elimination (4-center process) to make chlorosilylene, HSiCl, directly. This interpretation is supported by ab initio quantum calculations carried out at the G3 level which reveal the direct H-2 elimination route for the first time. RRKM modeling predicts the approximate magnitude of the pressure effect but is unable to determine the proportions of each pathway. The experimental data agree with the only previous measurements at room temperature. Comparisons with other reactions of SiH2 are also drawn.