986 resultados para Étoiles de faible masse


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heinrich Aull

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides data on diet and feeding habits of five benthic fish species (Torpedo torpedo (Linnaeus,1758), Mullus surmuletus (Linnaeus, 1758), Uranoscopus scaber (Linnaeus,1758), Scorpaena scrofa (Linnaeus,1758) and Synaptura lusitanica (Capello,1868)) common in the artisanal fisheries in the Cullera coast (Mediterranean sea – Spain) and T.torpedo, U.scaber y S. lusitánica feeding habits are almost unknown. T. torpedo preferred small preys like fishes, polychaetes and molluscs, these preys were feed in small portions. M. surmuletus showed the highest feeding dynamic, consuming small prey in large numbers like crustaceans (brachyura and amphypoda). U. scaber had similar feeding habits, but the numbers of preys in the stomach were lower. The principal preys were fishes, crustaceans, molluscs and polychaetes. S.scrofa ate larger prey items such as fish, followed by crustaceans and molluscs. Finally S. lusitánica had a high vacuity index, feeding polychaetes as the most important prey in their diet. Feeding strategy indicates a specialization of T.torpedo, S.scrofa and S. lusitanica; conversely M. surmuletus and U. scaber were generalized species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

par Otto Struve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’électrofilage est une technique de mise en œuvre efficace et versatile qui permet la production de fibres continues d’un diamètre typique de quelques centaines de nanomètres à partir de l’application d’un haut voltage sur une solution concentrée de polymères enchevêtrés. L’évaporation extrêmement rapide du solvant et les forces d’élongation impliquées dans la formation de ces fibres leur confèrent des propriétés hors du commun et très intéressantes pour plusieurs types d’applications, mais dont on commence seulement à effleurer la surface. À cause de leur petite taille, ces matériaux ont longtemps été étudiés uniquement sous forme d’amas de milliers de fibres avec les techniques conventionnelles telles que la spectroscopie infrarouge ou la diffraction des rayons X. Nos connaissances de leur comportement proviennent donc toujours de la convolution des propriétés de l’amas de fibres et des caractéristiques spécifiques de chacune des fibres qui le compose. Les études récentes à l’échelle de la fibre individuelle ont mis en lumière des comportements inhabituels, particulièrement l’augmentation exponentielle du module avec la réduction du diamètre. L’orientation et, de manière plus générale, la structure moléculaire des fibres sont susceptibles d’être à l'origine de ces propriétés, mais d’une manière encore incomprise. L’établissement de relations structure/propriétés claires et l’identification des paramètres qui les influencent représentent des défis d’importance capitale en vue de tirer profit des caractéristiques très particulières des fibres électrofilées. Pour ce faire, il est nécessaire de développer des méthodes plus accessibles et permettant des analyses structurales rapides et approfondies sur une grande quantité de fibres individuelles présentant une large gamme de diamètre. Dans cette thèse, la spectroscopie Raman confocale est utilisée pour l’étude des caractéristiques structurales, telles que l’orientation moléculaire, la cristallinité et le désenchevêtrement, de fibres électrofilées individuelles. En premier lieu, une nouvelle méthodologie de quantification de l’orientation moléculaire par spectroscopie Raman est développée théoriquement dans le but de réduire la complexité expérimentale de la mesure, d’étendre la gamme de matériaux pour lesquels ces analyses sont possibles et d’éliminer les risques d’erreurs par rapport à la méthode conventionnelle. La validité et la portée de cette nouvelle méthode, appelée MPD, est ensuite démontrée expérimentalement. Par la suite, une méthodologie efficace permettant l’étude de caractéristiques structurales à l’échelle de la fibre individuelle par spectroscopie Raman est présentée en utilisant le poly(éthylène téréphtalate) comme système modèle. Les limites de la technique sont exposées et des stratégies expérimentales pour les contourner sont mises de l’avant. Les résultats révèlent une grande variabilité de l'orientation et de la conformation d'une fibre à l'autre, alors que le taux de cristallinité demeure systématiquement faible, démontrant l'importance et la pertinence des études statistiques de fibres individuelles. La présence de chaînes montrant un degré d’enchevêtrement plus faible dans les fibres électrofilées que dans la masse est ensuite démontrée expérimentalement pour la première fois par spectroscopie infrarouge sur des amas de fibres de polystyrène. Les conditions d'électrofilage favorisant ce phénomène structural, qui est soupçonné d’influencer grandement les propriétés des fibres, sont identifiées. Finalement, l’ensemble des méthodologies développées sont appliquées sur des fibres individuelles de polystyrène pour l’étude approfondie de l’orientation et du désenchevêtrement sur une large gamme de diamètres et pour une grande quantité de fibres. Cette dernière étude permet l’établissement de la première relation structure/propriétés de ces matériaux, à l’échelle individuelle, en montrant clairement le lien entre l’orientation moléculaire, le désenchevêtrement et le module d'élasticité des fibres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’électrofilage est une technique de mise en œuvre efficace et versatile qui permet la production de fibres continues d’un diamètre typique de quelques centaines de nanomètres à partir de l’application d’un haut voltage sur une solution concentrée de polymères enchevêtrés. L’évaporation extrêmement rapide du solvant et les forces d’élongation impliquées dans la formation de ces fibres leur confèrent des propriétés hors du commun et très intéressantes pour plusieurs types d’applications, mais dont on commence seulement à effleurer la surface. À cause de leur petite taille, ces matériaux ont longtemps été étudiés uniquement sous forme d’amas de milliers de fibres avec les techniques conventionnelles telles que la spectroscopie infrarouge ou la diffraction des rayons X. Nos connaissances de leur comportement proviennent donc toujours de la convolution des propriétés de l’amas de fibres et des caractéristiques spécifiques de chacune des fibres qui le compose. Les études récentes à l’échelle de la fibre individuelle ont mis en lumière des comportements inhabituels, particulièrement l’augmentation exponentielle du module avec la réduction du diamètre. L’orientation et, de manière plus générale, la structure moléculaire des fibres sont susceptibles d’être à l'origine de ces propriétés, mais d’une manière encore incomprise. L’établissement de relations structure/propriétés claires et l’identification des paramètres qui les influencent représentent des défis d’importance capitale en vue de tirer profit des caractéristiques très particulières des fibres électrofilées. Pour ce faire, il est nécessaire de développer des méthodes plus accessibles et permettant des analyses structurales rapides et approfondies sur une grande quantité de fibres individuelles présentant une large gamme de diamètre. Dans cette thèse, la spectroscopie Raman confocale est utilisée pour l’étude des caractéristiques structurales, telles que l’orientation moléculaire, la cristallinité et le désenchevêtrement, de fibres électrofilées individuelles. En premier lieu, une nouvelle méthodologie de quantification de l’orientation moléculaire par spectroscopie Raman est développée théoriquement dans le but de réduire la complexité expérimentale de la mesure, d’étendre la gamme de matériaux pour lesquels ces analyses sont possibles et d’éliminer les risques d’erreurs par rapport à la méthode conventionnelle. La validité et la portée de cette nouvelle méthode, appelée MPD, est ensuite démontrée expérimentalement. Par la suite, une méthodologie efficace permettant l’étude de caractéristiques structurales à l’échelle de la fibre individuelle par spectroscopie Raman est présentée en utilisant le poly(éthylène téréphtalate) comme système modèle. Les limites de la technique sont exposées et des stratégies expérimentales pour les contourner sont mises de l’avant. Les résultats révèlent une grande variabilité de l'orientation et de la conformation d'une fibre à l'autre, alors que le taux de cristallinité demeure systématiquement faible, démontrant l'importance et la pertinence des études statistiques de fibres individuelles. La présence de chaînes montrant un degré d’enchevêtrement plus faible dans les fibres électrofilées que dans la masse est ensuite démontrée expérimentalement pour la première fois par spectroscopie infrarouge sur des amas de fibres de polystyrène. Les conditions d'électrofilage favorisant ce phénomène structural, qui est soupçonné d’influencer grandement les propriétés des fibres, sont identifiées. Finalement, l’ensemble des méthodologies développées sont appliquées sur des fibres individuelles de polystyrène pour l’étude approfondie de l’orientation et du désenchevêtrement sur une large gamme de diamètres et pour une grande quantité de fibres. Cette dernière étude permet l’établissement de la première relation structure/propriétés de ces matériaux, à l’échelle individuelle, en montrant clairement le lien entre l’orientation moléculaire, le désenchevêtrement et le module d'élasticité des fibres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All copies are signed by the editor and initialized by the author.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.