983 resultados para >425 µm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of interaction of 0-amino-D-serine (OADS) with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) (SHMT) was established by measuring changes in the enzyme activity,absorption spectra, circular dichroism (CD) spectra, and stopped-flow spectrophotometry. OADS was a reversible noncompetitive inhibitor (Ki = 1.8 pM) when serine was the varied substrate. The first step in the interaction of OADS with the enzyme was the disruption of enzyme-Schiff base, characterized by the rapid disappearance of absorbance at 425 nm (6.5 X lo3 M-' s-') and CD intensity at 430 nm. Concomitantly,there was a rapid increase in absorbance and CD intensity at 390 nm. The spectral properties of this intermediate enabled its identification as pyridoxal 5'-phosphate (PLP). These changes were followed by a slow unimolecular step (2 X s-') leading to the formation of PLP-OADS oxime, which was confirmed by its absorbance and fluorescence spectra and retention time on high-performance liquid chromatography. The PLP-OADS oxime was displaced from the enzyme by the addition of PLP as evidenced by the restoration of complete enzyme activity as well as by the spectral properties. The unique feature of the mechanism proposed for the interaction of OADS with sheep liver SHMT was the formation of PLP as an intermediate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IH NMR studies at 270 MHz on the synthetic alamethicin fragments Z-Aib-Pro-Aib-Ala-Aib-Ala-OMe (1-6), Boc-Gln-Aib-Val-Aib-Gly-Leu-Aib-OMe (7-1 3), Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-16), and Boc-Gly-Leu- Aib-Pro-Val-Aib-OMe (1 1-16) have been carried out in CDC13 and (CD3)2S0. The intramolecularly hydrogen bonded amide hydrogens in these peptides have been delineated by using solvent titration experiments and temperature coefficientsof NH chemical shifts in (CD3)+30. All the peptides adopt highly folded structures, characterized by intramolecular 4 - 1 hydrogen bonds. The 1-6 fragment adopts a 310 helical conformation with four hydrogen bonds, in agreement with earlier studies (Rao, Ch. P., Nagaraj, R., Rao, C. N. R., & Balaram, P. (1980) Biochemistry 19, 425-4311. The 7-13

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of interaction of methoxyamine with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) (SHMT) was established by measuring changes in enzyme activity, visible absorption spectra, circular dichroism and fluorescence, and by evaluating the rate constant by stopped-flow spectrophotometry. Methoxyamine can be considered as the smallest substituted aminooxy derivative of hydroxylamine. It was a reversible noncompetitive inhibitor (Ki = 25 microM) of SHMT similar to O-amino-D-serine. Like in the interaction of O-amino-D-serine and aminooxyacetic acid, the first step in the reaction was very fast. This was evident by the rapid disappearance of the enzyme-Schiff base absorbance at 425 nm with a rate constant of 1.3 x 10(3) M-1 sec-1 and CD intensity at 430 nm. Concomitantly, there was an increase in absorbance at 388 nm (intermediate I). The next step in the reaction was the unimolecular conversion (1.1 x 10(-3) sec-1) of this intermediate to the final oxime absorbing at 325 nm. The identity of the oxime was established by its characteristic fluorescence emission at 460 nm when excited at 360 nm and by high performance liquid chromatography. These results highlight the specificity in interactions of aminooxy compounds with sheep liver serine hydroxymethyltransferase and that the carboxyl group of the inhibitors enhances the rate of the initial interaction with the enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Terpyridine copper(II) complexes Cu(L)(2)](NO3)(2) where L is (4'-phenyl)-2 2' 6' 2 `'-terpyridine (ph-tpy in 1) and 4-(1 pyrenyl)]-2 2' 6' 2'-terpyridine (py-tpy in 2) are prepared characterized and their photocytotoxic activity studied The crystal structure of complex 1 shows distorted octahedral CuN6 coordination geometry The 1 2 electrolytic and one-electron paramagnetic complexes show a visible band near 650 nm in DMF-H2O The complexes show emission band at 352 nm for 1 and 425 nm for 2 when excited at 283 and 346 nm respectively The Cu(II)-Cu(I) redox couple is observed near -0 2 V versus SCE in DMF-0 1 m TBAP The complexes are avid partial-intercalative binders to calf thymus DNA giving binding constant (K-b) values of similar to 10(6) M-1 Complex 2 with its photoactive pyrenyl moiety exhibits significant photocleavage of pUC19 DNA in red light via singlet oxygen pathway Complex 2 also exhibits significant photo-activated cytotoxicity in HeLa cancer cells in visible light giving IC50 value of 11 9 mu M while being non-toxic in dark with an IC50 value of 130 5 mu M (C) 2010 Elsevier Ltd All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hot-working characteristics of the metal-matrix composite (MMC) Al-10 vol % SiC-particulate (SiCp) powder metallurgy compacts in as-sintered and in hot-extruded conditions were studied using hot compression testing. On the basis of the stress-strain data as a function of temperature and strain rate, processing maps depicting the variation in the efficiency of power dissipation, given by eegr = 2m/(m+1), where m is the strain rate sensitivity of flow stress, have been established and are interpreted on the basis of the dynamic materials model. The as-sintered MMC exhibited a domain of dynamic recrystallization (DRX) with a peak efficiency of about 30% at a temperature of about 500°C and a strain rate of 0.01 s�1. At temperatures below 350°C and in the strain rate range 0.001�0.01 s�1 the MMC exhibited dynamic recovery. The as-sintered MMC was extruded at 500°C using a ram speed of 3 mm s�1 and an extrusion ratio of 10ratio1. A processing map was established on the extruded product, and this map showed that the DRX domain had shifted to lower temperature (450°C) and higher strain rate (1 s�1). The optimum temperature and strain rate combination for powder metallurgy billet conditioning are 500°C and 0.01 s�1, and the secondary metal-working on the extruded product may be done at a higher strain rate of 1 s�1 and a lower temperature of 425°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An enzyme which cleaves the benzene ring of 3,5-dichiorocatechol has been purified to homogeneity from Pseudomonas cepacia CSV90, grown with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. The enzyme was a nonheme ferric dioxygenase and catalyzed the intradiol cleavage of all the examined catechol derivatives, 3,5-dichlorocatechol having the highest specificity constant of 7.3 μM−1 s−1 in an air-saturated buffer. No extradiol-cleaving activity was observed. Thus, the enzyme was designated as 3,5-dichlorocatechol 1,2-dioxygenase. The molecular weight of the native enzyme was ascertained to be 56,000 by light scattering method, while the Mr value of the enzyme denatured with 6 M guanidine-HCl or sodium dodecyl sulfate was 29,000 or 31,600, respectively, suggesting that the enzyme was a homodimer. The iron content was estimated to be 0.89 mol per mole of enzyme. The enzyme was deep red and exhibited a broad absorption spectrum with a maximum at around 425 nm, which was bleached by sodium dithionite, and shifted to 515 nm upon anaerobic 3,5-dichlorocatechol binding. The catalytic constant and the Km values for 3,5-dichlorocatechol and oxygen were 34.7 s−1 and 4.4 and 652 μM, respectively, at pH 8 and 25°C. Some heavy metal ions, chelating agents and sulfhydryl reagents inhibited the activity. The NH2-terminal sequence was determined up to 44 amino acid residues and compared with those of the other catechol dioxygenases previously reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of a daturalactone derivative has been determined by X-ray structural analysis. The compound crystallizes in orthorhomic space group P2(1)2(1)2(1) with cell parameters a = 15.141(1) angstrom, b = 18.425(1) angstrom, c = 19.251(2) angstrom. The structure was solved by direct methods and refined to R = 0.082. The asymmetric unit contains two non-equivalent molecules. Extensive hydrogen bonding is present. The conformations of the rings are A: a distorted half-chair, B: a perfect half-chair, C: a chair, D: an envelope-half chair and E: a twist boat. Ring junctions A/B, B/C, C/D are all trans fused. Methyl carbons C(18), C(19), C(27) and the lactone moiety is beta-oriented whereas the methyl carbons C(21) and C(28) are alpha-oriented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas putida CSV86, a soil bacterium, grows on 1- and 2-methylnaphthalene as the sole source of carbon and energy. In order to deduce the pathways for the biodegradation of 1- and 2-methylnaphthalene, metabolites were isolated from the spent medium and purified by thin layer chromatography. Emphasis has been placed on the structural characterisation of isolated intermediates by CC-MS, demonstration of enzyme activities in the cell free extracts and measurement of oxygen uptake by whole cells in the presence of various probable metabolic intermediates. The data obtained from such a study suggest the possibility of occurrence of multiple pathways in the degradation of 1- and 2-methylnaphthalene. We propose that, in one of the pathways, the aromatic ring adjacent to the one bearing the methyl moiety is oxidized leading to the formation of methylsalicylates and methylcatechols. In another pathway the methyl side chain is hydroxylated to -CH2-OH which is further converted to -CHO and -COOH resulting in the formation of naphthoic acid as the end product. In addition to this, 2-hydroxymethylnaphthalene formed by the hydroxylation of the methyl group of 2-methylnaphthalene undergoes aromatic ring hydroxylation. The resultant dihydrodiol is further oxidised by a series of enzyme catalysed reactions to form 4-hydroxymethyl catechol as the end product of the pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) is a homotetramer of M(r) 213,000 requiring pyridoxal-5'-phosphate (PLP) as cofactor, Removal of PLP from the holoenzyme converted the enzyme to the apo form which, in addition to being inactive, was devoid of the characteristic absorption spectrum. Upon the addition of PLP to the apoenzyme, complete activity was restored and the visible absorption spectrum with a maximum at 425 nm was regained. The interaction of PLP with the apoenzyme revealed two phases of reaction with pseudo-first-order rate constants of 20 +/- 5 s(-1) and 12.2 +/- 2.0 x 10(-3) s(-1), respectively. However, addition of PLP to the apoenzyme did not cause gross conformational changes as evidenced by circular dichroic and fluorescence spectroscopy. Although conformationally apoenzyme and holoenzyme were indistinguishable, they had distinct apparent melting temperatures of 51 +/- 2 and 58 +/- 2 degrees C, respectively, and the reconstituted holoenzyme was thermally as stable as the native holoenzyme. These results suggested that there was no apparent difference in the secondary structure of holoenzyme, apoenzyme, and reconstituted holoenzyme, However, sedimentation analysis of the apoenzyme revealed the presence of two peaks of S-20,S-w values of 8.7 +/- 0.5 and 5.7 +/- 0.3 S, respectively. A similar pattern was observed when the apoenzyme was chromatographed on a calibrated Sephadex G-150 column. The first peak corresponded to the tetrameric form (M(r) 200,000 +/- 15,000) while the second peak had a M(r) of 130,000 +/- 10,000. Reconstitution experiments revealed that only the tetrameric form of the apoenzyme could be converted into an active holoenzyme while the dimeric form could not be reconstituted into an active enzyme. These results demonstrate that PLP plays an important role in maintaining the structural integrity of the enzyme by preventing the dissociation of the enzyme into subunits, in addition to its function in catalysis. (C) 1996 Academic Press, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of Static Var Compensators (SVCs) to rapidly and continuously control reactive power in response to changing system conditions can result in the improvement of system stability and also increase the power transfer in the transmission system. This paper concerns the application of strategically located SVCs to enhance the transient stability limits and the direct evaluation of the effect of these SVCs on transient stability using a Structure Preserving Energy Function (SPEF). The SVC control system can be modelled from the steady- state control characteristic to accurately simulate its effect on transient stability. Treating the SVC as a voltage-dependent reactive power load leads to the derivation of a path-independent SPEF for the SVC. Case studies on a 10-machine test system using multiple SVCs illustrate the effects of SVCs on transient stability and its accurate prediction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The active site lysine residue, K256, involved in Schiffs base linkage with pyridoxal-5'-phosphate (PEP) in sheep liver recombinant serine hydroxymethyltransferase (rSHMT) was changed to glutamine or arginine by site-directed mutagenesis. The purified K256Q and K256R SHMTs had less than 0.1% of catalytic activity with serine and H(4)folate as substrates compared to rSHMT. The mutant enzymes also failed to exhibit the characteristic visible absorbance spectrum (lambda(max) 425 nm) and did not produce the quinonoid intermediate (lambda(max) 495 nm) upon the addition of glycine and H(4)folate. The mutant enzymes were unable to catalyze aldol cleavage of beta-phenylserine and transamination of D-alanine. These results suggested that the mutation of the lysine had resulted in the inability of the enzyme to bind to the cofactor. Therefore, the K256Q SHMT was isolated as a dimer and the K256R SHMT as a mixture of dimers and tetramers which were converted to dimers slowly. On the other hand, rSHMT was stable as a tetramer for several months, further confirming the role of PLP in maintenance of oligomeric structure. The mutant enzymes also failed to exhibit the increased thermal stability upon the addition of serine, normally observed with rSHMT. The enhanced thermal stability has been attributed to a change in conformation of the enzyme from open to closed form leading to reaction specificity. The mutant enzymes were unable to undergo this conformational change probably because of the absence of bound cofactor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single crystals of Bi2V1-xGexO5.5-x/2 (x = 0.2, 0.4, and 0.6) were grown by slow cooling of melts. Bismuth vanadate transforms from an orthorhombic to a tetragonal structure and subsequently to an orthorhombic system when the Ge4+ concentration was varied from x = 0.2 to x = 0.6. All of these compositions crystallized in polar space groups (Aba2, F4mm, and Fmm2 for x = 0.2, 0.4, and 0.6, respectively). The structures were fully determined by single crystal X-ray diffraction studies, (C) 1999 Elsevier Science Ltd.