979 resultados para :baseline inhibitory concentration
Resumo:
The use of doxorubicin (DOX), one of the most effective antitumor molecules in the treatment of metastatic breast cancer, is limited by its low tumor selectivity and its severe side effects. Colloidal carriers based on biodegradable poly(butylcyanoacrylate) nanoparticles (PBCA NPs) may enhance DOX antitumor activity against breast cancer cells, thus allowing a reduction of the effective dose required for antitumor activity and consequently the level of associated toxicity. DOX loading onto PBCA NPs was investigated in this work via both drug entrapment and surface adsorption. Cytotoxicity assays with DOX-loaded NPs were performed in vitro using breast tumor cell lines (MCF-7 human and E0771 mouse cancer cells), and in vivo evaluating antitumor activity in immunocompetent C57BL/6 mice. The entrapment method yielded greater drug loading values and a controlled drug release profile. Neither in vitro nor in vivo cytotoxicity was observed for blank NPs. The 50% inhibitory concentration (IC50) of DOX-loaded PBCA NPs was significantly lower for MCF-7 and E0771 cancer cells (4 and 15 times, respectively) compared with free DOX. Furthermore, DOX-loaded PBCA NPs produced a tumor growth inhibition that was 40% greater than that observed with free DOX, thus reducing DOX toxicity during treatment. These results suggest that DOX-loaded PBCA NPs have great potential for improving the efficacy of DOX therapy against advanced breast cancers.
Resumo:
Mycobacterium tuberculosis (Mtb) has acquired resistance and consequently the antibiotic therapeutic options available against this microorganism are limited. In this scenario, the use of usnic acid (UA), a natural compound, encapsulated into liposomes is proposed as a new approach in multidrug-resistant tuberculosis (MDR-TB) therapy. Thus the aim of this study was to evaluate the effect of the encapsulation of UA into liposomes, as well as its combination with antituberculous agents such as rifampicin (RIF) and isoniazid (INH) against MDR-TB clinical isolates. The in vitro antimycobacterial activity of UA-loaded liposomes (UA-Lipo) against MDR-TB was assessed by the microdilution method. The in vitro interaction of UA with antituberculous agents was carried out using checkerboard method. Minimal inhibitory concentration values were 31.25 and 0.98 µg/mL for UA and UA-Lipo, respectively. The results exhibited a synergistic interaction between RIF and UA [fractional inhibitory concentration index (FICI) = 0.31] or UA-Lipo (FICI = 0.28). Regarding INH, the combination of UA or UA-Lipo revealed no marked effect (FICI = 1.30-2.50). The UA-Lipo may be used as a dosage form to improve the antimycobacterial activity of RIF, a first-line drug for the treatment of infections caused by Mtb.
Resumo:
In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by (1)H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent.
Resumo:
In 1875, 7 years prior to the description of the Koch bacillus, Klebs visualized the first Streptococcus pneumoniae in a pleural fluid. Since then, this organism has played a determinant role in biomedical science. From a biological point of view, it was largely implicated in the development of passive and active immunization by serotherapy and vaccination, respectively. Genetic transformation was also first observed in S. pneumoniae, leading to the discovery of DNA. From a clinical point of view, S. pneumoniae is still today a prime cause of otitis media in children and of pneumonia in all age groups, as well as a predominant cause of meningitis and bacteremia. In adults, bacteremia is still entailed with a mortality of over 25%. Although S. pneumoniae remained very sensitive to penicillin for many years, penicillin-resistance has emerged and increased dramatically over the last 15 years. During this period of time, the frequency of penicillin-resistant isolates has increased from < or = 1% to frequencies varying from 20 to 60% in geographic areas as diverse as South Africa, Spain, France, Hungary, Iceland, Alaska, and numerous regions of the United States and South America. In Switzerland, the current frequency of penicillin-resistant pneumococci ranges between 5 and > or = 10%. The increase in penicillin-resistant pneumococci correlates with the intensive use of beta-lactam antibiotics. The mechanism of resistance is not due to bacterial production of penicillinase, but to an alteration of the bacterial target of penicillin, the so-called penicillin-binding proteins. Resistance is subdivided into (i) inter mediate level resistance (minimal inhibitory concentration [MIC] of penicillin of 0.1-1 mg/L) and (ii) high level resistance (MCI > or = 2 mg/L). The clinical significance of intermediate resistance remains poorly defined. On the other hand, highly resistant strains were responsible for numerous therapeutical failures, especially in cases of meningitis. Antibiotics recommended against penicillin-resistant pneumococci include cefotaxime, ceftriaxone, imipenem and in some instances vancomycin. However, penicillin-resistant pneumococci tend to present cross-resistances to all the antibotics of the beta-lactam family and could even become resistant to the last resort drugs mentioned above. Thus, in conclusion, the explosion of resistance to penicillin in pneumococci is a ubiquitous phenomenon which must be fought against by (i) a strict utilization of antibiotics, (ii) the practice of microbiological sampling of infected foci before treatment, (iii) the systematic surveillance of resistance profiles of pneumococci against antibiotics and (iv) the adequate vaccination of populations at risk.
Resumo:
We investigated the activities of fluconazole, caspofungin, anidulafungin, and amphotericin B against Candida species in planktonic form and biofilms using a highly sensitive assay measuring growth-related heat production (microcalorimetry). C. albicans, C. glabrata, C. krusei, and C. parapsilosis were tested, and MICs were determined by the broth microdilution method. The antifungal activities were determined by isothermal microcalorimetry at 37°C in RPMI 1640. For planktonic Candida, heat flow was measured in the presence of antifungal dilutions for 24 h. Candida biofilm was formed on porous glass beads for 24 h and exposed to serial dilutions of antifungals for 24 h, and heat flow was measured for 48 h. The minimum heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration reducing the heat flow peak by ≥50% (≥90% for amphotericin B) at 24 h for planktonic Candida and at 48 h for Candida biofilms (measured also at 24 h). Fluconazole (planktonic MHICs, 0.25 to >512 μg/ml) and amphotericin B (planktonic MHICs, 0.25 to 1 μg/ml) showed higher MHICs than anidulafungin (planktonic MHICs, 0.015 to 0.5 μg/ml) and caspofungin (planktonic MHICs, 0.125 to 0.5 μg/ml). Against Candida species in biofilms, fluconazole's activity was reduced by >1,000-fold compared to its activity against the planktonic counterparts, whereas echinocandins and amphotericin B mainly preserved their activities. Fluconazole induced growth of planktonic C. krusei at sub-MICs. At high concentrations of caspofungin (>4 μg/ml), paradoxical growth of planktonic C. albicans and C. glabrata was observed. Microcalorimetry enabled real-time evaluation of antifungal activities against planktonic and biofilm Candida organisms. It can be used in the future to evaluate new antifungals and antifungal combinations and to study resistant strains.
Resumo:
Because of its severity, it is agreed that infectious endocarditis should be prevented whenever possible. Determining adequate prophylactic measures involves establishing (a) the patients at risk, (b) the procedures that might provoke bacteraemia, (c) the most effective prophylactic regimen, and (d) a balance between the risks of side effects from prophylaxis and of developing infectious endocarditis. Patients at risk and procedures inducing bacteraemia have been identified by clinical studies. On the other hand, the efficacy of prophylactic antibiotics has been based on animal studies. Randomised, placebo-controlled studies do not exist in humans because they would require large patient numbers and would raise ethical issues due to the severity of the disease. Case-control studies have indicated that infectious endocarditis prophylaxis is effective, but prevents only a limited number of cases. Animal experiments have revealed several key issues for human application. First, antibiotics do not prevent the early stages of valve colonisation, but rather kill the microorganisms after their attachment to the cardiac lesions. Second, the duration of antibiotic presence in the serum is critical. Under experimental conditions, the drugs must remain above their minimal inhibitory concentration for the organisms for > or = 10 h, to allow time for bacterial clearance from the valves. Third, antibiotic-induced killing is not the only mechanism allowing bacterial clearance. Other factors, such as platelet microbicidal proteins, may act in concert with the drugs to sterilise the lesions. Recommendations for prophylaxis have recently been revised in Europe and the USA. New information has improved the definition of groups at risk. Since most cases of infectious endocarditis are not preceded by medical procedures, primary prevention of infectious endocarditis should target infected foci responsible for spontaneous bacteraemia (e.g. poor dental hygiene). The purpose of this article is to update the existing recommendations in Switzerland, under the perspective of changing epidemiology, the availability of new drugs, and harmonisation with recommendations in other countries.
Resumo:
Quinupristin-dalfopristin (Q-D) synergizes with cefepime for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Here, we studied whether the synergism was restricted to MRSA and if it extended to non-beta-lactam cell wall inhibitors or to other inhibitors of protein synthesis. Three MRSA and two methicillin-susceptible S. aureus (MSSA) strains were tested, including an isogenic pair of mecA (-)/mecA (+) S. aureus Newman. The drug interactions were determined by fractional inhibitory concentration (FIC) indices and population analysis profiles. The antibacterial drugs that we used included beta-lactam (cefepime) and non-beta-lactam cell wall inhibitors (D-cycloserine, fosfomycin, vancomycin, teicoplanin), inhibitors of protein synthesis (Q-D, erythromycin, chloramphenicol, tetracycline, linezolid, fusidic acid), and polynucleotide inhibitors (cotrimoxazole, ciprofloxacin). The addition of each protein inhibitor to cefepime was synergistic (FIC ≤ 0.5) or additive (FIC > 0.5 but < 1) against MRSA, but mostly indifferent against MSSA (FIC ≥ 1 but ≤ 4). This segregation was not observed after adding cotrimoxazole or ciprofloxacin to cefepime. Population analysis profiles were performed on plates in the presence of increasing concentrations of the cell wall inhibitors plus 0.25 × minimum inhibitory concentration (MIC) of Q-D. Cefepime combined with Q-D was synergistic against MRSA, but D-cycloserine and glycopeptides were not. Thus, the synergism was specific to beta-lactam antibiotics. Moreover, the synergism was not lost against fem mutants, indicating that it acted at another level. The restriction of the beneficial effect to MRSA suggests that the functionality of penicillin-binding protein 2A (PBP2A) was affected, either directly or indirectly. Further studies are necessary in order to provide a mechanism for this positive interaction.
Resumo:
Daptomycin is bactericidal against meticillin-resistant Staphylococcus aureus (MRSA), glycopeptide-intermediate-resistant S. aureus (GISA) and vancomycin-susceptible and -resistant enterococci. However, selection for daptomycin-resistant derivatives has occasionally been reported during therapy in humans. Here we evaluate whether selection for daptomycin-resistant S. aureus or enterococci could be prevented in vitro by combining daptomycin with amoxicillin/clavulanic acid, ampicillin, gentamicin or rifampicin. Six strains of S. aureus (four MRSA and two GISA) and four strains of enterococci (two Enterococcus faecalis and two Enterococcus faecium) were serially exposed in broth to two-fold stepwise increasing concentrations of daptomycin alone or in combination with a fixed concentration [0.25x minimum inhibitory concentration (MIC)] of either of the second agents. The daptomycin MIC was examined after each cycle. Exposure to daptomycin alone gradually selected for S. aureus and enterococci with an increased MIC. Gentamicin did not prevent the emergence of daptomycin-resistant bacteria. Rifampicin was also unable to prevent daptomycin resistance, although resistance was slightly delayed. In contrast, amoxicillin/clavulanic acid or ampicillin prevented or greatly delayed the selection of daptomycin-resistant mutants in S. aureus and enterococci, respectively. Addition of amoxicillin/clavulanic acid or ampicillin to daptomycin prevents, or greatly delays, daptomycin resistance in vitro. Future studies in animal models are needed to predict the utility of these combinations in humans.
Resumo:
The widespread incidence of enterococci resistant to ampicillin, vancomycin and aminoglycosides, the first-line anti-enterococcal antibiotics, has made the treatment of severe enterococcal infections difficult and alternatives should be explored. We investigated the activity of daptomycin combined with linezolid against three Enterococcus faecalis and four Enterococcus faecium strains resistant to standard drugs used for therapy. Minimum inhibitory concentrations (MICs) were determined by the broth dilution method. Drug interactions were assessed by the checkerboard and time-kill methods. Synergy was defined by a fractional inhibitory concentration index (FICI) of ≤0.5 or a ≥2 log10 CFU/mL killing at 24 h with the combination in comparison with killing by the most active single agent. Indifference was defined by a FICI > 0.5-4.0 or a 1-2 log10 CFU/mL killing compared with the most active single agent. MICs of daptomycin were 2-4 μg/mL for E. faecalis and 2-8 μg/mL for E. faecium. MICs of linezolid were 1-2 μg/mL for all bacteria. In the checkerboard assay, five isolates showed synergism (FICI < 0.5) and two showed indifference (FICIs of 0.53 and 2). Killing studies revealed synergy of daptomycin plus linezolid against four isolates (2.2-3.7 log10 CFU/mL kill) and indifference (1.1-1.6 log10 CFU/mL kill) for the other three strains. Antagonism was not observed. In conclusion, the combination of daptomycin and linezolid had a synergistic or indifferent effect against multidrug-resistant enterococci. Additional studies are needed to explore the potential of this combination for severe enterococcal infections when first-line antibiotic combinations cannot be used.
Resumo:
OBJECTIVES: To determine HIV-1 RNA in cerebrospinal fluid (CSF) of successfully treated patients and to evaluate if combination antiretroviral treatments with higher central nervous system penetration-effectiveness (CPE) achieve better CSF viral suppression. METHODS: Viral loads (VLs) and drug concentrations of lopinavir, atazanavir, and efavirenz were measured in plasma and CSF. The CPE was calculated using 2 different methods. RESULTS: The authors analyzed 87 CSF samples of 60 patients. In 4 CSF samples, HIV-1 RNA was detectable with 43-82 copies per milliliter. Median CPE in patients with detectable CSF VL was significantly lower compared with individuals with undetectable VL: CPE of 1.0 (range, 1.0-1.5) versus 2.3 (range, 1.0-3.5) using the method of 2008 (P = 0.011) and CPE of 6 (range, 6-8) versus 8 (range, 5-12) using the method of 2010 (P = 0.022). The extrapolated CSF trough levels for atazanavir (n = 12) were clearly above the 50% inhibitory concentration (IC50) in only 25% of samples; both patients on atazanavir/ritonavir with detectable CSF HIV-1 RNA had trough levels in the range of the presumed IC50. The extrapolated CSF trough level for lopinavir (n = 42) and efavirenz (n = 18) were above the IC50 in 98% and 78%, respectively, of samples, including the patients with detectable CSF HIV-1 RNA. CONCLUSIONS: This study suggests that treatment regimens with high intracerebral efficacy reflected by a high CPE score are essential to achieve CSF HIV-1 RNA suppression. The CPE score including all drug components was a better predictor for treatment failure in the CSF than the sole concentrations of protease inhibitor or nonnucleoside reverse transcriptase inhibitor in plasma or CSF.
Resumo:
We evaluated microcalorimetry for real-time susceptibility testing of Aspergillus spp. based on growth-related heat production. The minimal heat inhibitory concentration (MHIC) for A. fumigatus ATCC 204305 was 1 mg/L for amphotericin B, 0.25 mg/L for voriconazole, 0.06 mg/L for posaconazole, 0.125 mg/L for caspofungin and 0.03 mg/L for anidulafungin. Agreement within two 2-fold dilutions between MHIC (determined by microcalorimetry) and MIC or MEC (determined by CLSI M38A) was 90% for amphotericin B, 100% for voriconazole, 90% for posaconazole and 70% for caspofungin. This proof-of-concept study demonstrated the potential of isothermal microcalorimetry for growth evaluation of Aspergillus spp. and real-time antifungal susceptibility testing.
Resumo:
Novel macrocyclic amidinourea derivatives 11, 18, and 25 were synthesized and evaluated as antifungal agents against wild-type and fluconazole resistant Candida species. Macrocyclic compounds 11 and 18 were synthesized through a convergent approach using as a key step a ring-closing metathesis macrocyclization reaction, whereas compounds 25 were obtained by our previously reported synthetic pathway. All the macrocyclic amidinoureas showed antifungal activity toward different Candida species higher or comparable to fluconazole and resulted highly active against fluconazole resistant Candida strains showing in many cases minimum inhibitory concentration values lower than voriconazole.
Resumo:
OBJECTIVES: The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) at high bacterial densities. The effect of three inoculum sizes on the selection of resistance to vancomycin, daptomycin, and linezolid was investigated in methicillin-resistant Staphylococcus aureus (MRSA). METHODS: Low (10(4) CFU/ml), medium (10(6) CFU/ml), and high (10(8) CFU/ml) inocula of MRSA were exposed to twofold increasing concentrations of either drug during 15 days of cycling. MICs for low (MICL), medium (MICM), and high (MICH) inocula were determined daily. Conventional MICs were measured at days 1, 5, 10, and 15. Experiments were performed in triplicate. RESULTS: At the beginning of the experiment a small IE was observed for vancomycin (MICL=1 μg/ml, MICM=1-2 μg/ml, and MICH=2 μg/ml) and a significant IE for daptomycin (MICL=0.25 μg/ml, MICM=0.25-0.5 μg/ml, and MICH=2 μg/ml). Linezolid exhibited no IE at low and medium inocula (MICL=1 μg/ml and MICM=1-2 μg/ml), but with the high inoculum, concentrations up to 2,048 μg/ml did not fully inhibit visual growth. During cycling, increase of MIC was observed for all antibiotics. At day 15, MICL, MICM, and MICH of vancomycin were 2-4, 4-8, and 4-16 μg/ml and of daptomycin were 0.5-2, 8-128, and 64-256 μg/ml, respectively. MICL and MICM of linezolid were 1 and 2-4 μg/ml, respectively. Conventional MICs showed vancomycin and daptomycin selection of resistance since day 5 depending on the inocula. No selection of linezolid resistance was observed. CONCLUSIONS: Our results showed the importance of the inoculum size in the development of resistance. Measures aimed at lowering the inoculum at the site of infection should be used whenever possible in parallel to antimicrobial therapy.
Resumo:
Abstract The main thesis topic relates to the 'molecular mechanisms of penicillin-induced bacterial death. Indeed, bacteria have developed two principal mechanisms to escape the killing effect of ß-lactam antibiotics: resistance and tolerance. Resistant bacteria are characterized by their ability to grow in the presence of drug concentrations higher than the one inhibiting the growth of susceptible members of the same species. Hence, resistant bacteria have an increased minimal inhibitory concentration (MIC) of the drug. Nevertheless, when exposed to antibiotic concentrations exceeding their new MIC, resistant bacteria remain sensitive to the antibiotic killing effect. In contrast, tolerant bacteria have an unchanged MIC. However, they have a considerably increased ability to survive drug-induced killing, even at concentrations exceeding their MIC by several orders of magnitude. In other words, in the presence of the antibiotic, tolerant bacteria become persister cells which stop growing but are not killed. In the present thesis, it is shown that the survival phenotype of a tolerant Streptococcus gordonii strain depends on two components belonging to sugar metabolism pathways. First, the transcription factor CcpA which mediates a global regulatory mechanism allowing bacteria to utilize the most efficient sugar source for their growth. We show that the inactivation of the ccpA gene leads to a partial loss of penicillin tolerance both in vitro and in a rat model of experimental endocarditis. Second, the Enzyme I of the phosphotransferase system which is involved in the uptake and phosphorylation of sugars. Here, we -show that a single nucleotide mutation in ptsI, the gene encoding the Enzyme I, is sufficient to confer a fully tolerant phenotype in S. gordonii both in vivo and in vivo. The mutation results in a radical proline to arginine substitution in the C-terminal domain of the protein, probably leading to a decrease in its homodimerization and subsequent activity. Taken together our results prove that tolerance is a global survival mechanism linked to sugar metabolism. We hypothesize that, in the presence of the antibiotic, the already altered metabolic processes of the tolerant strain are completely inactivated. Hence, bacteria may enter in a dormant state and become insensitive to the bactericidal effect of ß-lactams, which depends on actively dividing cells. This thesis manuscript also contains two other side-projects. The first one establishes that the ability to form a biofilm is not a requisite for the successful establishment of endocarditis due to S. gordonii. The second one characterizes the S. gordonii a-phosphoglucomutase gene, and shows that its inactivation results in a loss of in vitro fitness and in vivo virulence. Résumé Le sujet principal de cette thèse concerne les mécanismes moléculaires de la mort bactérienne induite par la pénicilline. En effet, les bactéries ont développé deux mécanismes principaux pour échapper à l'effet bactéricide des ß-lactamines : la résistance et la tolérance. Les bactéries résistantes sont caractérisées par leur capacité de croître en présence de concentration d'antibiotiques plus élevées que celles inhibant la croissance des organismes sensibles de la même espèce. Les bactéries résistantes ont donc une augmentation de leur concentration minimale inhibitrice (CMI) à l'antibiotique. Néanmoins, quand elles sont exposées à des concentrations dépassant leur nouvelle CMI, elles restent sensibles à l'effet bactéricide. Au contraire, les bactéries tolérantes ont une CMI inchangée. Toutefois, elles ont une très importante capacité à survivre à l'effet bactéricide des ß-lactamines, ceci même à des concentrations excédant leur CMI de plusieurs ordres de grandeur. En d'autres termes, en présence de l'antibiotique, les bactéries tolérantes deviennent des cellules persistantes qui arrêtent leur croissance mais ne sont pas tuées. Dans la présente thèse, il est montré que le phénotype de survie d'un Streptococcus gordonii tolérant dépend de deux composants appartenant aux voies du métabolisme des sucres. Premièrement, le facteur de transcription CcpA qui contrôle un système global de régulation permettant à la bactérie d'utiliser les sources de sucre les plus efficaces pour sa croissance. Il est montré que l'inactivation du gène ccpA résulte en la perte partielle de la tolérance à la pénicilline aussi bien in vitro que dans un modèle d'endocardite expérimentale chez le rat. Deuxièmement, l'Enzyme I du système de phosphotransfert impliqué dans l'import et la phosphorylation des sucres. Nous montrons qu'une mutation ponctuelle d'un nucléotide dans ptsl, le gène codant pour l'Enzyme I, suffit à complètement conférer un phénotype tolérant chez S. gordonii aussi bien in vitro qu'in vivo. La mutation induit la substitution radicale d'une proline en une arginine dans le domaine C-terminal de la protéine, résultant probablement en une diminution de sa capacité d'homodimérisation et donc d'activité. Dans leur ensemble, nos résultats prouvent que la tolérance est un mécanisme global de survie lié au métabolisme des sucres. Nous présentons l'hypothèse que, en présence de l'antibiotique, les processus métaboliques déjà altérés de la souche tolérante deviennent complètement inactifs. En conséquence, les bactéries entreraient dans un état dormant nonréplicatif, devenant ainsi insensibles à l'effet bactéricide des ß-lactamines qui nécessite des cellules en cours de division active. Le manuscrit de cette thèse contient également deux projets secondaires. Le premier montre que la capacité de former un biofilm n'est pas un prérequis pour le succès de l'initiation de l'endocardite à S. gordonii. Le second caractérise le gène de l'a-phosphoglucomutase de S. gordonii et montre que son inactivation résulte en une perte de fitness in vitro et de virulence in vivo.
Resumo:
Alpha-D-mannopyranosides are potent FimH antagonists, which inhibit the adhesion of Escherichia coli to highly mannosylated uroplakin Ia on the urothelium and therefore offer an efficient therapeutic opportunity for the treatment and prevention of urinary tract infection. For the evaluation of the therapeutic potential of FimH antagonists, their effect on the disaggregation of E. coli from Candida albicans and guinea pig erythrocytes (GPE) was studied. The mannose-specific binding of E. coli to yeast cells and erythrocytes is mediated by type 1 pili and can be monitored by aggregometry. Maximal aggregation of C. albicans or GPE to E. coli is reached after 600 s. Then the FimH antagonist was added and disaggregation determined by light transmission over a period of 1400 s. A FimH-deleted mutant of E. coli, which does not induce any aggregation, was used in a control experiment. The activities of FimH antagonists are expressed as IC(50)s, the half maximal inhibitory concentration of the disaggregation potential. n-Heptyl alpha-D-mannopyranoside (1) was used as a reference compound and exhibits an IC(50) of 77.14 microM , whereas methyl alpha-D-mannopyranoside (2) does not lead to any disaggregation at concentrations up to 800 microM. o-Chloro-p-[N-(2-ethoxy-3,4-dioxocyclobut-1-enyl)amino]phenyl alpha-D-mannopyranoside (3) shows a 90-fold and 2-chloro-4-nitrophenyl alpha-D-mannopyranoside (4) a 6-fold increased affinity compared to 1. Finally, 4-nitrophenyl alpha-D-mannopyranoside (5) exhibits an activity similar to 1. As negative control, D-galactose (6) was used. The standardized aggregation assay generates concentration-dependent, reproducible data allowing the evaluation of FimH antagonists according to their potency to inhibit E. coli adherence and can therefore be employed to select candidates for experimental and clinical studies for treatment and prevention of urinary tract infections.