955 resultados para "stem pitting"
Resumo:
Mesenchymal stem cells (MSCs) are considered to be â â immunologically privileged.â â In a previous work when human adipose tissue-derived stem cells (hASCs) subcutaneously implanted in mice we did not identify an adverse host response1. Recently, it was shown that tissue regeneration could benefit from the polarization of M2 macrophages subpopulations 2. In this study we hypothesised that undifferentiated hASCs and derived osteoblasts and chondrocytes are able to switch murine bone marrow-derived macrophages (mBMMÃ s) into M2 phenotype, aiding tissue regeneration. Murine BMMÃ s were plated in direct contact with undifferentiated and osteo or chondro-differentiated hASCs for 4 h, 10 h, 24 h and 72 h. The cytokine profile was analysed by qRT-PCR and the surface markers were detected by flow cytometry. The direct interaction of both cell types was observed by time lapse microscopy. The results showed that mBMMÃ s polarized after contacting tissue culture polystyrene. This M2 phenotype was maintained along the experiment in direct contact with both undifferentiated and osteo or chondro-differentiated hASCs. This was confirmed by the expression of IL-1, IL-10, IL-4, TNF-a and IFN-g (genetic profile) and surface markers (CD206 + + , CD336 + + , MHC II + and CD86 + + ) detection. These data suggest the potential of hASCs in contemporary xenogenic tissue engineering and regenerative medicine strategies, as well as host immune system modulation in autoimmune diseases.
Resumo:
Cell Sheets of hASCs (hASCs-CS) have been previously proposed for wound healing applications(1, 2) and despite the concern for production time reduction, the possibility of having these hASCs-CS off-the-shelf is appealing. The goal of this work was to define a cryopreservation methodology allowing to preserve cells viability and the properties CS matrix. hASCs-CS obtained from three different donors were created in UP-cell thermoresponsive dishes(Nunc, Germany) as previously reported(1,2). Different cryopreservation conditions were considered: i)FBS plus DMSO(5% and10%); ii)0.4M of Trehalose plus DMSO (5% and 10%); iii)cryosolution PLL (Akron Biotech, USA); and iv)vitrification. The cryopreservation effect was first assessed for cellular viability by flow cytometry using 7-AAD, and after dissociating the hASCs-CS with collagenase and trypsin-EDTA 0.25%. The expression (RT-PCR) and deposition (western blot and immunocytochemistry) of collagen type I, laminin and fibronectin, and the organization (TEM) of the extracellular matrix was further assessed before and after hASCs-CS cryopreservation to determine a potential effect of the method over matrix composition and integrity. The obtained results confirmed that cell viability is affected by the cryopreservation methodology, as shown before for different CS(3). Interestingly, the matrix properties were not significantly altered and the typical cell sheetâ s easiness of manipulation for transplantation was not lost.
Resumo:
Bioactive glasses, especially silica-based materials, are reported to pres- ent osteoconductive and osteoinductive properties, fundamental char- acteristics in bone regeneration [1,2]. Additionally, dexamethasone (Dex) is one of the bioactive agents able to induce the osteogenic differ- entiation of mesenchymal stem cells by increasing the alkaline phos- phatase activity, and the expression levels of Osteocalcin and Bone Sialoprotein [3]. Herein, we synthesised silica (SiO2) nanoparticles (that present inherent bioactivity and ability to act as a sustained drug delivery system), and coated their surface using poly-L-lysine (PLL) and hyaluronic acid (HA) using the layer-by-layer processing technique. Further on, we studied the influence of these new SiO2-polyelectrolyte coated nanoparticles as Dex sustained delivery systems. The SiO2 nanoparticles were loaded with Dex (SiO2-Dex) and coated with PLL and HA (SiO2-Dex-PLL-HA). Their Dex release profile was evaluated and a more sustained release was obtained with the SiO2-Dex-PLL-HA. All the particles were cultured with human bone marrow-derived mes- enchymal stem cells (hBMSCs) under osteogenic differentiation culture conditions. hBMSCs adhered, proliferated and differentiated towards the osteogenic lineage in the presence of SiO2 (DLS 174nm), SiO2-Dex (DLS 175nm) and SiO2-Dex-PLL-HA (DLS 679nm). The presence of these materials induced the overexpression of osteogenic transcripts, namely of Osteocalcin, Bone Sialoprotein and Runx2. Scanning Elec- tron Microscopy/Electron Dispersive Spectroscopy analysis demon- strated that hBMSCs synthesised calcium phosphates when cultured with SiO2-Dex and SiO2-Dex-PLL-HA nanoparticles. These results indi- cate the potential use of these SiO2-polyelectrolytes coated nanoparti- cles as dexamethasone delivery systems capable of promoting osteogenic differentiation of hBMSCs.
Resumo:
Wharton's jelly stem cells (WJSCs) are a potential source of transplantable stem cells in cartilage-regenerative strategies, due to their highly proliferative and multilineage differentiation capacity. We hypothesized that a non-direct co-culture system with human articular chondrocytes (hACs) could enhance the potential chondrogenic phenotype of hWJSCs during the expansion phase compared to those expanded in monoculture conditions. Primary hWJSCs were cultured in the bottom of a multiwell plate separated by a porous transwell membrane insert seeded with hACs. No statistically significant differences in hWJSCs duplication number were observed under either of the culture conditions during the expansion phase. hWJSCs under co-culture conditions show upregulations of collagen type I and II, COMP, TGFβ1 and aggrecan, as well as of the main cartilage transcription factor, SOX9, when compared to those cultured in the absence of chondrocytes. Chondrogenic differentiation of hWJSCs, previously expanded in co-culture and monoculture conditions, was evaluated for each cellular passage using the micromass culture model. Cells expanded in co-culture showed higher accumulation of glycosaminoglycans (GAGs) compared to cells in monoculture, and immunohistochemistry for localization of collagen type I revealed a strong detection signal when hWJSCs were expanded under monoculture conditions. In contrast, type II collagen was detected when cells were expanded under co-culture conditions, where numerous round-shaped cell clusters were observed. Using a micromass differentiation model, hWJSCs, previously exposed to soluble factors secreted by hACs, were able to express higher levels of chondrogenic genes with deposition of cartilage extracellular matrix components, suggesting their use as an alternative cell source for treating degenerated cartilage.
Resumo:
In order to compare the development of strata in the early stages of secondary forest succession with vessel parameters of the tree species, a forest inventory was carried out in 4-year (Q1: 48 m2), 11-year (Q2: 400 m2) and 20-year (Q3: 400 m2) forests and vessel parameters were investigated from stem cross sections of 18 species obtained in Q2. Thirty three species (21 families), 77 species (35 families), 39 species (20 families) were found in Ql, Q2, Q3, respectively. The percentage of dead individuals, dead stems and the percentage of individuals with multiple stems increased with time after clear cutting. Also, the total D2H of Q3 was 26.1 times that of Q1, and the development of strata started in Q2 and Q3. The image analysis of vessel size, area and number of vessels revealed that species which reach the forest canopy had a large D2H value, vessel diameter and area, while species which remain near the forest floor had smaller ones. Poecilanthe effusa (Huber) Ducke is an example of the latter case, with a large number of individuals and abundant sprouting of new stems from stumps, but with high mortality.
Resumo:
The essential oil of the leaves and fine stems of Aniba canelilla (Kunth) Mez collected in the city of Manaus, AM, Brazil, were obtained by hydrodistillation and analyzed by GC/MS. Forty-two components were identified, of which 1-nitro-2-phenylethane, as expected, was the major (71.2%-68.2%).
Resumo:
Poly(vinylidene fluoride) (PVDF) is a biocompatible material with excellent electroactive properties. Non-electroactive α-PVDF and electroactive β-PVDF were used to investigate the substrate polarization and polarity influence on the focal adhesion size and number as well as on human adipose stem cells (hASCs) differentiation. hASCs were cultured on different PVDF surfaces adsorbed with fibronectin and focal adhesion size and number, total adhesion area, cell size, cell aspect ratio and focal adhesion density were estimated using cells expressing EGFP-vinculin. Osteogenic differentiation was also determined using a quantitative alkaline phosphatase assay. The surface charge of the poled PVDF films (positive or negative) influenced the hydrophobicity of the samples, leading to variations in the conformation of adsorbed extracellular matrix (ECM) proteins, which ultimately modulated the stem cell adhesion on the films and induced their osteogenic differentiation.
Resumo:
This work reports on the influence of the substrate polarization of electroactive β-PVDF on human adipose stem cells (hASCs) differentiation under static and dynamic conditions. hASCs were cultured on different β-PVDF surfaces (non-poled and “poled -”) adsorbed with fibronectin and osteogenic differentiation was determined using a quantitative alkaline phosphatase assay. “Poled -” β-PVDF samples promote higher osteogenic differentiation, which is even higher under dynamic conditions. It is thus demonstrated that electroactive membranes can provide the necessary electromechanical stimuli for the differentiation of specific cells and therefore will support the design of suitable tissue engineering strategies, such as bone tissue engineering.
Resumo:
Three coumarins, 5-methoxypsoralene, xanthyletin, and (-)-marmesin, have been isolated from the ethanolic extract of the stem of the Amazonian plant Brosimum potabile. The structures were determined on the basis of NMR analyses and by comparison with spectroscopic data in the literature. The analysis of the hexane fractions by GC-MS in EIMS mode suggested the presence of (1-methylpentyl)-benzene; α,α-dimethyl-4-(1-methylethyl)-benzenemethanol; 1-methyl-3,5-bis(1-methylethyl)-benzene; urs-12-ene; chola-5,22-dien-3β-ol; cholesta-4,6-dien-3β-ol; sitosteryl 9(Z)-octadecenoate; cholesta-5,22-dien-3β-ol; cholesta-4,6,22-trien-3-one; and cholesta-4,22-dien-3-one. NMR data of other hexane fractions indicated the presence of 3β-acetoxy-lup-12,20(29)-diene; 3β-acetoxy-olean-12-ene; 3β-acetoxy-urs-12-ene; and adian-5-ene. All these compounds are first described in B. potabile.
Resumo:
The ethanol extract from stem bark of Sacoglottis uchi Huber (popularly known as uchi in the Amazon Region) was submitted to chromatographic fractionation. The dichloromethane fractions provided the pentacyclic triterpene 3-oxo-friedelin (1). The dichloromethane:methanol fractions provided the pentacyclic triterpenes pseudotaraxasterol (2), lupeol (3), a-amyrin (4), betulin (5), and methyl 2ß,3ß-dihydroxy-urs-12-en-28-oate (6) and a mixture of the steroids sitosterol (7) and stigmasterol (8). Their chemical structures were determined by NMR spectroscopy and comparison with spectroscopic data from the literature. All compounds are described for the first time in this species.
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
The success of synthetic bone implants requires good interface between the material and the host tissue. To study the biological relevance of fi bronectin (FN) density on the osteogenic commitment of human bone marrow mesenchymal stem cells (hBMMSCs), human FN was adsorbed in a linear density gradient on the surface of PCL. The evolution of the osteogenic markers alkaline phosphatase and collagen 1 alpha 1 was monitored by immunohistochemistry, and the cytoskeletal organization and the cell-derived FN were assessed. The functional analysis of the gradient revealed that the lower FN-density elicited stronger osteogenic expression and higher cytoskeleton spreading, hallmarks of the stem cell commitment to the osteoblastic lineage. The identifi cation of the optimal FN density regime for the osteogenic commitment of hBM-MSCs presents a simple and versatile strategy to signifi cantly enhance the surface properties of polycaprolactone as a paradigm for other synthetic polymers intended for bone-related applications.
Resumo:
The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range ( 0.5–4.7 lm), and mean distance between peaks (RSm) gradually varying from 214 lm to 33 lm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra 1.53 lm/RSm 79 lm in Dex-deprived OI medium, and Ra 0.93 lm/RSm 135 lm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.
Resumo:
Among the various possible embodiements of Advanced Therapies and in particular of Tissue Engineering the use of temporary scaffolds to regenerate tissue defects is one of the key issues. The scaffolds should be specifically designed to create environments that promote tissue development and not merely to support the maintenance of communities of cells. To achieve that goal, highly functional scaffolds may combine specific morphologies and surface chemistry with the local release of bioactive agents. Many biomaterials have been proposed to produce scaffolds aiming the regeneration of a wealth of human tissues. We have a particular interest in developing systems based in nanofibrous biodegradable polymers1,2. Those demanding applications require a combination of mechanical properties, processability, cell-friendly surfaces and tunable biodegradability that need to be tailored for the specific application envisioned. Those biomaterials are usually processed by different routes into devices with wide range of morphologies such as biodegradable fibers and meshes, films or particles and adaptable to different biomedical applications. In our approach, we combine the temporary scaffolds populated with therapeutically relevant communities of cells to generate a hybrid implant. For that we have explored different sources of adult and also embryonic stem cells. We are exploring the use of adult MSCs3, namely obtained from the bone marrow for the development autologous-based therapies. We also develop strategies based in extra-embryonic tissues, such as amniotic fluid (AF) and the perivascular region of the umbilical cord4 (Whartonâ s Jelly, WJ). Those tissues offer many advantages over both embryonic and other adult stem cell sourcess. These tissues are frequently discarded at parturition and its extracorporeal nature facilitates tissue donation by the patients. The comparatively large volume of tissue and ease of physical manipulation facilitates the isolation of larger numbers of stem cells. The fetal stem cells appear to have more pronounced immunomodulatory properties than adult MSCs. This allogeneic escape mechanism may be of therapeutic value, because the transplantation of readily available allogeneic human MSCs would be preferable as opposed to the required expansion stage (involving both time and logistic effort) of autologous cells. Topics to be covered: This talk will review our latest developments of nanostructured-based biomaterials and scaffolds in combination with stem cells for bone and cartilage tissue engineering.
Resumo:
Co-cultures of two or more cell types and biodegradable biomaterials of natural origin have been successfully combined to recreate tissue microenvironments. Segregated co-cultures are preferred over conventional mixed ones in order to better control the degree of homotypic and heterotypic interactions. Hydrogel-based systems in particular, have gained much attention to mimic tissue-specific microenvironments and they can be microengineered by innovative bottom-up approaches such as microfluidics. In this study, we developed bi-compartmentalized (Janus) hydrogel microcapsules of methacrylated hyaluronic acid (MeHA)/methacrylated-chitosan (MeCht) blended with marine-origin collagen by droplet-based microfluidics co-flow. Human adipose stem cells (hASCs) and microvascular endothelial cells (hMVECs) were co-encapsulated to create platforms of study relevant for vascularized bone tissue engineering. A specially designed Janus-droplet generator chip was used to fabricate the microcapsules (<250â μm units) and Janus-gradient co-cultures of hASCs: hMVECs were generated in various ratios (90:10; 75:25; 50:50; 25:75; 10:90), through an automated microfluidic flow controller (Elveflow microfluidics system). Such monodisperse 3D co-culture systems were optimized regarding cell number and culture media specific for concomitant maintenance of both phenotypes to establish effective cell-cell (homotypic and heterotypic) and cell-materials interactions. Cellular parameters such as viability, matrix deposition, mineralization and hMVECs re-organization in tube-like structures, were enhanced by blending MeHA/MeCht with marine-origin collagen and increasing hASCs: hMVECs co-culture gradient had significant impact on it. Such Janus hybrid hydrogel microcapsules can be used as a platform to investigate biomaterials interactions with distinct combined cell populations.