949 resultados para zinc-ion selective electrode


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that near-Nernstian calibration slopes can be obtained with a Cu1.8Se electrode in a range of cupric ion buffers in spite of a high chloride content. Best results are obtained with the ligands ethylenediamine, glycine and histidine. The onset of cupric ion toxicity towards marine organisms falls within the pCu calibration range obtained with glycine, and the Cu1.8Se electrode could, therefore, be useful for monitoring cupric ion activity in bioassays in sea-water media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic conducting polymers have attracted much interest in material science. This letter reports potentiometric response behavior of polypyrrole (PPy)polymer film electrodes prepared by electrochemical polymerization, and a new kind of ion selective

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of ion-selective electrode-water membrane system is proposed and an assumption of water membrane is confirmed. A NdCl_3 water membrane electrode has be- en made te demonstrate its applicability to the determination of Nd (PMBP)_3 (PMBP=1- phenyl-3-methyl-4-benzoyl-5-pyrazolone)in cyclohexanone. Conditions for stabilizing potential of reference electrode in nonaqueous system are optimized. It is observed that the potential response on the surface of two immiscible solution is bidirection...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the fabrication of an ion-selective electrode in which a polymeric Schiff base complex of cobalt(II) is used as the ionophore.The main advantage of the electrode is that it is mechanically stable upto 3 months..The electrode shows a linear response in the range of 2.5 × 10-5-0.5 × 10-1 mol dm-3. The response time of the electrode is 30 s.The pH range at which the electrode works is 3.8 to 6.8. The electrode was found to be selective towards chloride ion in the presence of ions like Na+, Ca2+, Mn2+, ,Fe3+, Co2+, Ni2+, Cu2+, Zn2+, CH3COO-, NO3-, SO42- ,Br- and NO2-.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of employing zinc polycarboxylate dental cement as a controlled release material has been studied. Benzalkonium chloride was used as the active ingredient, and incorporated at concentrations of 1, 2 and 3% by mass within the cement. At these levels, there was no observable effect on the speed of setting. Release was followed using an ion-selective electrode to determine changes in chloride ion concentration with time. This technique showed that the additive was released when the cured cement was placed in water, with release occurring by a diffusion mechanism for the first 3 h, but continuing beyond that for up to 1 week. Diffusion coefficients were in the range 5.62 × 10(−6) cm(2) s(−1) (for 1% concentration) to 10.90 × 10(−6) cm(2) s(−1) (for 3% concentration). Up to 3% of the total loading of benzalkonium chloride was released from the zinc polycarboxylate after a week, which is similar to that found in previous studies with glass-ionomer cement. It is concluded that zinc polycarboxylate cement is capable of acting as a useful material for the controlled release of active organic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binary room temperature molten electrolytes based on acetamide and zinc perchlorate have been prepared and characterized. The electrolytes are found to be highly zinc ion-conducting with very favorable physicochemical and electrochemical characteristics. Raman and infrared spectroscopic studies reveal the presence of large free-ion concentration in the molten liquid. This is corroborated by the high conductivity observed under ambient conditions. Rechargeable zinc batteries assembled using gamma-MnO2 as the cathode and Zn as the anode with the molten electrolyte show high discharge capacities over several cycles, indicating excellent reversibility. This unique class of acetamide-based, room temperature molten liquids may become viable and green alternative electrolytes for rechargeable zinc-based secondary batteries. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A newly synthesized and crystalographically characterized napthelene-pyrazol conjugate, 1-(5-phenyl-1H-pyrazole-3-ylimino)-methyl]-naphthalen-2-ol (HL) behaves as an Al(III) ion-selective chemosensor through internal charge transfer (ICT)-chelation-enhanced fluorescence (CHEF) processes in 100 mM HEPES buffer (water-DMSO 5 : 1, v/v) at biological pH with almost no interference of other competitive ions. This mechanism is readily studied from electronic, fluorimetric and H-1 NMR titration. The probe (HL) behaved as a highly selective fluorescent sensor for Al(III) ions as low as 31.78 nM within a very short response time (15-20 s). The sensor (HL), which has no cytotoxicity, is also efficient in detecting the distribution of Al(III) ions in HeLa cells via image development under fluorescence microscope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new cell permeable quinazoline based receptor (1) selectively senses HSO4- ions of nanomolar region in 0.1 M HEPES buffer (ethanol-water: 1/5, v/v) at biological pH over other competitive ions through the proton transfer followed by hydrogen bond formation and subsequent anion coordination to yield the LHSO4]-LH+center dot 3H(2)O (2) ensemble, which has been crystallographically characterised to ensure the structure property relationship. This non-cytotoxic HSO4- ion selective biomarker has great potential to recognize the intercellular distribution of HSO4- ions in HeLa cells under fluorescence microscope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A newly designed fluorescent aluminum(III) complex (L'-Al; 2) of a structurally characterized non-fluorescent rhodamine Schiff base (L) has been isolated in pure form and characterized using spectroscopic and physico-chemical methods with theoretical density functional theory (DFT) support. On addition of Al(III) ions to a solution of L in HEPES buffer (1 mM, pH 7.4; EtOH-water, 1 : 3 v/v) at 25 degrees C, the systematic increase in chelation-enhanced fluorescence (CHEF) enables the detection of Al(III) ions as low as 60 nM with high selectivity, unaffected by the presence of competitive ions. Interestingly, the Al(III) complex (L'-Al; 2) is specifically able to detect fluoride ions by quenching the fluorescence in the presence of large amounts of other anions in the HEPES buffer (1 mM, pH 7.4) at 25 degrees C. On the basis of our experimental and theoretical findings, the addition of Al3+ ions to a solution of L helps to generate a new fluorescence peak at 590 nm, due to the selective binding of Al3+ ions with L in a 1 : 1 ratio with a binding constant (K) of 8.13 x 10(4) M-1. The Schiff base L shows no cytotoxic effect, and it can therefore be employed for determining the intracellular concentration of Al3+ and F-ions by 2 in living cells using fluorescence microscopy.