825 resultados para wind power integration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

为研究风电并网对互联系统低频振荡的影响,基于完整的双馈风电机组模型,定性分析了两区域互联系统在风电机组并网前后阻尼特性的变化情况.从双馈风电机组并网输送距离、并网容量、互联系统联络线传送功率、是否加装电力系统稳定器等多个方面,多角度分析了风电场并网对互联系统小干扰稳定及低频振荡特性的影响.之后,以两个包括两个区域的电力系统为例,进行了系统的计算分析和比较.结果表明,有双馈风电机组接入的互联电力系统,在不同运行模式下,双馈风电机组的并网输送距离、出力水平、联络线传送功率对低频振荡模式的影响在趋势和程度上均有显著差异,这样在对风电场进行入网规划、设计和运行时就需要综合考虑这些因素的影响.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A graphical method is presented for determining the capability of individual system nodes to accommodate wind power generation. The method is based upon constructing a capability chart for each node at which a wind farm is to be connected. The capability chart defines the domain of allowable power injections at the candidate node, subject to constraints imposed by voltage limits, voltage stability and equipment capability limits being satisfied. The chart is first derived for a two-bus model, before being extended to a multi-node power system. The graphical method is employed to derive the chart for a two-node system, as well as its application to a multi-node power system, considering the IEEE 30-bus test system as a case study. Although the proposed method is derived with the intention of determining the wind farm capacity to be connected at a specific node, it can be used for the analysis of a PQ bus loading as well as generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last decade there has been a rapid global increase in wind power stimulated by energy and climate policies. However, as wind power is inherently variable and stochastic over a range of time scales, additional system balancing is required to ensure system reliability and stability. This paper reviews the technical, policy and market challenges to achieving ambitious wind power penetration targets in Ireland’s All-Island Grid and examines a number of measures proposed to address these challenges. Current government policy in Ireland is to address these challenges with additional grid reinforcement, interconnection and open-cycle gas plant. More recently smart grid combined with demand side management and electric vehicles have also been presented as options to mitigate the variability of wind power. In addition, the transmission system operators have developed wind farm specific grid codes requiring improved turbine controls and wind power forecasting techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of Plug-in electric vehicles in the transportation sector has a great potential to reduce oil dependency, the GHG emissions and to contribute for the integration of renewable sources into the electricity generation mix. Portugal has a high share of wind energy, and curtailment may occur, especially during the off-peak hours with high levels of hydro generation. In this context, the electric vehicles, seen as a distributed storage system, can help to reduce the potential wind curtailments and, therefore, increase the integration of wind power into the power system. In order to assess the energy and environmental benefits of this integration, a methodology based on a unit commitment and economic dispatch is adapted and implemented. From this methodology, the thermal generation costs, the CO2 emissions and the potential wind generation curtailment are computed. Simulation results show that a 10% penetration of electric vehicles in the Portuguese fleet would increase electrical load by 3% and reduce wind curtailment by only 26%. This results from the fact that the additional generation required to supply the electric vehicles is mostly thermal. The computed CO2 emissions of the EV are 92 g CO2/kWh which become closer to those of some new ICE engines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the ever-increasing penetration level of wind power, the impacts of wind power on the power system are becoming more and more significant. Hence, it is necessary to systematically examine its impacts on the small signal stability and transient stability in order to find out countermeasures. As such, a comprehensive study is carried out to compare the dynamic performances of power system respectively with three widely-used power generators. First, the dynamic models are described for three types of wind power generators, i. e. the squirrel cage induction generator (SCIG), doubly fed induction generator (DFIG) and permanent magnet generator (PMG). Then, the impacts of these wind power generators on the small signal stability and transient stability are compared with that of a substituted synchronous generator (SG) in the WSCC three-machine nine-bus system by the eigenvalue analysis and dynamic time-domain simulations. Simulation results show that the impacts of different wind power generators are different under small and large disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globally on-shore wind power has seen considerable growth in all grid systems. In the coming decade off-shore wind power is also expected to expand rapidly. Wind power is variable and intermittent over various time scales because it is weather dependent. Therefore wind power integration into traditional grids needs additional power system and electricity market planning and management for system balancing. This extra system balancing means that there is additional system costs associated with wind power assimilation. Wind power forecasting and prediction methods are used by system operators to plan unit commitment, scheduling and dispatch and by electricity traders and wind farm owners to maximize profit. Accurate wind power forecasting and prediction has numerous challenges. This paper presents a study of the existing and possible future methods used in wind power forecasting and prediction for both on-shore and off-shore wind farms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although pumped hydro storage is seen as a strategic key asset by grid operators, financing it is complicated in new liberalised markets. It could be argued that the optimum generation portfolio is now determined by the economic viability of generators based on a short to medium term return on investment. This has meant that capital intensive projects such as pumped hydro storage are less attractive for wholesale electricity companies because the payback periods are too long. In tandem a significant amount of wind power has entered the generation mix, which has resulted in operating and planning integration issues due to wind's inherent uncertain, varying spatial and temporal nature. These integration issues can be overcome using fast acting gas peaking plant or energy storage. Most analysis of wind power integration using storage to date has used stochastic optimisation for power system balancing or arbitrage modelling to examine techno-economic viability. In this research a deterministic dynamic programming long term generation expansion model is employed to optimise the generation mix, total system costs and total carbon dioxide emissions, and unlike other studies calculates reserve to firm wind power. The key finding of this study is that the incentive to build capital-intensive pumped hydro storage to firm wind power is limited unless exogenous market costs come very strongly into play. Furthermore it was demonstrated that reserve increases with increasing wind power showing the importance of ancillary services in future power systems. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant’s ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator.

In order to perform the assessment from the perspective of the facility owners (e.g., electric power utilities, independent power producers), an optimal design and operating strategy of the hybrid system is determined for both the amine storage and partial capture configurations. A linear optimization model is developed to determine the optimal component sizes for the hybrid system and capture rates while meeting constraints on annual average emission targets of CO2, and variability of the combined power output. Results indicate that there are economic benefits of flexible operation relative to conventional CCS, and demonstrate that the hybrid system could operate as an energy storage system: providing an effective pathway for wind power integration as well as a mechanism to mute the variability of intermittent wind power.

In order to assess the performance of the hybrid system from the perspective of the system operator, a modified Unit Commitment/ Economic Dispatch model is built to consider and represent the techno-economic aspects of operation of the hybrid system within a power grid. The hybrid system is found to be effective in helping the power system meet an average CO2 emissions limit equivalent to the CO2 emission rate of a state-of-the-art natural gas plant, and to reduce power system operation costs and number of instances and magnitude of energy and reserve scarcity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forecasting abrupt variations in wind power generation (the so-called ramps) helps achieve large scale wind power integration. One of the main issues to be confronted when addressing wind power ramp forecasting is the way in which relevant information is identified from large datasets to optimally feed forecasting models. To this end, an innovative methodology oriented to systematically relate multivariate datasets to ramp events is presented. The methodology comprises two stages: the identification of relevant features in the data and the assessment of the dependence between these features and ramp occurrence. As a test case, the proposed methodology was employed to explore the relationships between atmospheric dynamics at the global/synoptic scales and ramp events experienced in two wind farms located in Spain. The achieved results suggested different connection degrees between these atmospheric scales and ramp occurrence. For one of the wind farms, it was found that ramp events could be partly explained from regional circulations and zonal pressure gradients. To perform a comprehensive analysis of ramp underlying causes, the proposed methodology could be applied to datasets related to other stages of the wind-topower conversion chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a grid-side inverter based supercapacitor direct integration scheme for wind power systems. The inverter used in this study consists of a conventional two-level inverter and three H-bridge modules. Three supercapacitor banks are directly connected to the dc-links of H-bridge modules. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, for the maximum utilization of super capacitors their voltages should be allowed to vary. As a result of this variable voltage space vectors of the hybrid inverter get distributed unevenly. To handle this issue, a modified PWM method and a space vector modulation method are proposed and they can generate undistorted current even in the presence of unevenly distributed space vectors. A supercapacitor voltage balancing method is also presented in this paper. Simulation results are presented to validate the efficacy of the proposed scheme, modulation methods and control techniques.