808 resultados para wetness index
Resumo:
Remote sensing and geographical information technologies were used to discriminate areas of high and low risk for contracting kala-azar or visceral leishmaniasis. Satellite data were digitally processed to generate maps of land cover and spectral indices, such as the normalised difference vegetation index and wetness index. To map estimated vector abundance and indoor climate data, local polynomial interpolations were used based on the weightage values. Attribute layers were prepared based on illiteracy and the unemployed proportion of the population and associated with village boundaries. Pearson's correlation coefficient was used to estimate the relationship between environmental variables and disease incidence across the study area. The cell values for each input raster in the analysis were assigned values from the evaluation scale. Simple weighting/ratings based on the degree of favourable conditions for kala-azar transmission were used for all the variables, leading to geo-environmental risk model. Variables such as, land use/land cover, vegetation conditions, surface dampness, the indoor climate, illiteracy rates and the size of the unemployed population were considered for inclusion in the geo-environmental kala-azar risk model. The risk model was stratified into areas of "risk"and "non-risk"for the disease, based on calculation of risk indices. The described approach constitutes a promising tool for microlevel kala-azar surveillance and aids in directing control efforts.
Resumo:
Is it possible to build predictive models (PMs) of soil particle-size distribution (psd) in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index). The PMs explained more than half of the data variance. This performance is similar to (or even better than) that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd) of soils in regions of complex geology.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Mapping of soil has been highlighted in the scientific community, because as alertness about the environment increases, it is necessary to understand more and more about the distribution of the soil in the landscape, as well as its potential and its limitations for the use. In that way the main aim of this study was to apply indices representing landscape with the use of geoprocessing to give support in the delimitation of different compartments of landscape. Primary indices used were altitude above channel network (AACN) and secondary channel network base level (CNBL), multiresolution index of valley bottom flatness (MRVBF) and Wetness index (ITW), having as object of study the Canguiri Experimental Farm, located in Pinhais, Curitiba's Metropolitan region. To correlate the chemical attributes and granulometric ones in sampling groups, totalizing 17 points (Sugamosto, 2002), a matrix of a simple linear correlation (Pearson) with the indices of the landscape were generated in the Software Statistica. The conclusion is that the indices representing the landscape used in the analysis of groupings were efficient as support to map soil at the level of suborder of Brazilian Soil Classification System.
Resumo:
The municipality of San Juan La Laguna, Guatemala is home to approximately 5,200 people and located on the western side of the Lake Atitlán caldera. Steep slopes surround all but the eastern side of San Juan. The Lake Atitlán watershed is susceptible to many natural hazards, but most predictable are the landslides that can occur annually with each rainy season, especially during high-intensity events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the Atitlán region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. This study used data from multiple attributes, at every landslide and non-landslide point, and applied different multivariate analyses to optimize a model for landslides prediction during high-intensity precipitation events like Hurricane Stan. The attributes considered in this study are: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The attributes were pre-evaluated for their ability to predict landslides using four different attribute evaluators, all available in the open source data mining software Weka: filtered subset, information gain, gain ratio and chi-squared. Three multivariate algorithms (decision tree J48, logistic regression and BayesNet) were optimized for landslide prediction using different attributes. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points. The probability map developed in this study was also compared to the results of a bivariate landslide susceptibility analysis conducted for the watershed, encompassing Lake Atitlán and San Juan. Landslides from Tropical Storm Agatha 2010 were used to independently validate this study’s multivariate model and the bivariate model. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.
Resumo:
To effectively assess and mitigate risk of permafrost disturbance, disturbance-p rone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape charac- teristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Pen- insula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed lo- cations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) N 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Addition- ally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results in- dicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of dis- turbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation
Resumo:
This study used Landsat 8 satellite imagery to identify environmental variables of households with malaria vector breeding sites in a malaria endemic rural district in Western Kenya. Understanding the influence of environmental variables on the distribution of malaria has been critical in the strengthening of malaria control programs. Using remote sensing and GIS technologies, this study performed a land classification, NDVI, Tasseled Cap Wetness Index, and derived land surface temperature values of the study area and examined the significance of each variable in predicting the probability of a household with a mosquito breeding site with and without larvae. The findings of this study revealed that households with any potential breeding sites were characterized by higher moisture, higher vegetation density (NDVI) and in urban areas or roads. The results of this study also confirmed that land surface temperature was significant in explaining the presence of active mosquito breeding sites (P< 0.000). The present study showed that freely available Landsat 8 imagery has limited use in deriving environmental characteristics of malaria vector habitats at the scale of the Bungoma East District in Western Kenya.
Resumo:
We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios <35 and d13C-CH4 values of -50.6 per mil. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas-sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO42- and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable proportions of light hydrocarbons in shallow hydrates even at the summit of the AMV, and possibly also of other MVs in the region. Depending on their crystallographic structure, however, hydrates will already decompose and release hydrocarbon masses if sediment temperatures exceed ca. 19.3°C and 21.0°C, respectively. Based on observations from other mud volcanoes, the common occurrence of such temperatures induced by heat flux from below into the immediate subsurface appears likely for the AMV.
Resumo:
Permafrost landscapes experience different disturbances and store large amounts of organic matter, which may become a source of greenhouse gases upon permafrost degradation. We analysed the influence of terrain and geomorphic disturbances (e.g. soil creep, active-layer detachment, gullying, thaw slumping, accumulation of fluvial deposits) on soil organic carbon (SOC) and total nitrogen (TN) storage using 11 permafrost cores from Herschel Island, western Canadian Arctic. Our results indicate a strong correlation between SOC storage and the topographic wetness index. Undisturbed sites stored the majority of SOC and TN in the upper 70 cm of soil. Sites characterised by mass wasting showed significant SOC depletion and soil compaction, whereas sites characterised by the accumulation of peat and fluvial deposits store SOC and TN along the whole core. We upscaled SOC and TN to estimate total stocks using the ecological units determined from vegetation composition, slope angle and the geomorphic disturbance regime. The ecological units were delineated with a supervised classification based on RapidEye multispectral satellite imagery and slope angle. Mean SOC and TN storage for the uppermost 1?m of soil on Herschel Island are 34.8 kg C/m**2 and 3.4 kg N/m**2, respectively.
Resumo:
To effectively assess and mitigate risk of permafrost disturbance, disturbance-p rone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape charac- teristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Pen- insula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed lo- cations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) N 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Addition- ally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results in- dicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of dis- turbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation
Resumo:
Leaf wetness duration (LWD) is related to plant disease occurrence and is therefore a key parameter in agrometeorology. As LWD is seldom measured at standard weather stations, it must be estimated in order to ensure the effectiveness of warning systems and the scheduling of chemical disease control. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results for operational use. However, the requirement of net radiation (Rn) is a disadvantage foroperational physical models, since this variable is usually not measured over crops or even at standard weather stations. With the objective of proposing a solution for this problem, this study has evaluated the ability of four models to estimate hourly Rn and their impact on LWD estimates using a Penman-Monteith approach. A field experiment was carried out in Elora, Ontario, Canada, with measurements of LWD, Rn and other meteorological variables over mowed turfgrass for a 58 day period during the growing season of 2003. Four models for estimating hourly Rn based on different combinations of incoming solar radiation (Rg), airtemperature (T), relative humidity (RH), cloud cover (CC) and cloud height (CH), were evaluated. Measured and estimated hourly Rn values were applied in a Penman-Monteith model to estimate LWD. Correlating measured and estimated Rn, we observed that all models performed well in terms of estimating hourly Rn. However, when cloud data were used the models overestimated positive Rn and underestimated negative Rn. When only Rg and T were used to estimate hourly Rn, the model underestimated positive Rn and no tendency was observed for negative Rn. The best performance was obtained with Model I, which presented, in general, the smallest mean absolute error (MAE) and the highest C-index. When measured LWD was compared to the Penman-Monteith LWD, calculated with measured and estimated Rn, few differences were observed. Both precision and accuracy were high, with the slopes of the relationships ranging from 0.96 to 1.02 and R-2 from 0.85 to 0.92, resulting in C-indices between 0.87 and 0.93. The LWD mean absolute errors associated with Rn estimates were between 1.0 and 1.5h, which is sufficient for use in plant disease management schemes.
Resumo:
To analyze the relationship between parity, pre-pregnancy body mass index (BMI), and gestational weight gain (GWG). This observational controlled study was conducted from November 2013 to April 2014, with postpartum women who started antenatal care up to 14 weeks and had full-term births. Data were collected from medical records and antenatal cards. Descriptive and bivariate analyses were performed. The significance level was 5%. Data were collected from 130 primiparous and 160 multiparous women. At the beginning of prenatal care, 54.62% of the primiparous were eutrophic, while the majority of multiparous were overweight or obese (62.51%). Multiparas are two times more likely to be obese at the beginning of their pregnancies, when compared to primiparas. The average pre-pregnancy weight and final pregnancy weight was significantly higher in multiparous, however, the mean GWG was higher among primiparous. We found an inverse correlation between parity and the total GWG, but initial BMI was significantly higher in multiparas. Nevertheless, monitoring of the GWG through actions that promote a healthier lifestyle is needed, regardless of parity and nutritional status, in order to prevent excessive GWG and postpartum weight retention and consequently inadequate pre-pregnancy nutritional status in future pregnancies.