996 resultados para western ridge


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the changes of the North Atlantic subtropical high (NASH) and its impact on summer precipitation over the southeastern (SE) United States using the 850-hPa geopotential height field in the National Centers forEnvironmental Prediction (NCEP) reanalysis, the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), long-term rainfall data, and Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) model simulations during the past six decades (1948-2007). The results show that the NASH in the last 30 yr has become more intense, and its western ridge has displaced westward with an enhanced meridional movement compared to the previous 30 yr. When the NASH moved closer to the continental United States in the three most recent decades, the effect of the NASH on the interannual variation of SE U.S. precipitation is enhanced through the ridge's north-south movement. The study's attribution analysis suggested that the changes of the NASH are mainly due to anthropogenic warming. In the twenty-first century with an increase of the atmospheric CO2 concentration, the center of the NASH would be intensified and the western ridge of the NASH would shift farther westward. These changes would increase the likelihood of both strong anomalously wet and dry summers over the SEUnited States in the future, as suggested by the IPCC AR4 models. © 2011 American Meteorological Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2014, Springer-Verlag Berlin Heidelberg.This study assesses the skill of advanced regional climate models (RCMs) in simulating southeastern United States (SE US) summer precipitation and explores the physical mechanisms responsible for the simulation skill at a process level. Analysis of the RCM output for the North American Regional Climate Change Assessment Program indicates that the RCM simulations of summer precipitation show the largest biases and a remarkable spread over the SE US compared to other regions in the contiguous US. The causes of such a spread are investigated by performing simulations using the Weather Research and Forecasting (WRF) model, a next-generation RCM developed by the US National Center for Atmospheric Research. The results show that the simulated biases in SE US summer precipitation are due mainly to the misrepresentation of the modeled North Atlantic subtropical high (NASH) western ridge. In the WRF simulations, the NASH western ridge shifts 7° northwestward when compared to that in the reanalysis ensemble, leading to a dry bias in the simulated summer precipitation according to the relationship between the NASH western ridge and summer precipitation over the southeast. Experiments utilizing the four dimensional data assimilation technique further suggest that the improved representation of the circulation patterns (i.e., wind fields) associated with the NASH western ridge substantially reduces the bias in the simulated SE US summer precipitation. Our analysis of circulation dynamics indicates that the NASH western ridge in the WRF simulations is significantly influenced by the simulated planetary boundary layer (PBL) processes over the Gulf of Mexico. Specifically, a decrease (increase) in the simulated PBL height tends to stabilize (destabilize) the lower troposphere over the Gulf of Mexico, and thus inhibits (favors) the onset and/or development of convection. Such changes in tropical convection induce a tropical–extratropical teleconnection pattern, which modulates the circulation along the NASH western ridge in the WRF simulations and contributes to the modeled precipitation biases over the SE US. In conclusion, our study demonstrates that the NASH western ridge is an important factor responsible for the RCM skill in simulating SE US summer precipitation. Furthermore, the improvements in the PBL parameterizations for the Gulf of Mexico might help advance RCM skill in representing the NASH western ridge circulation and summer precipitation over the SE US.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plume of Ice Shelf Water (ISW) flowing into the Weddell Sea over the Filchner sill contributes to the formation of Antarctic Bottom Water. The Filchner overflow is simulated using a hydrostatic, primitive equation three-dimensional ocean model with a 0.5–2 Sv ISW influx above the Filchner sill. The best fit to mooring temperature observations is found with influxes of 0.5 and 1 Sv, below a previous estimate of 1.6 ± 0.5 Sv based on sparse mooring velocities. The plume first moves north over the continental shelf, and then turns west, along slope of the continental shelf break where it breaks up into subplumes and domes, some of which then move downslope. Other subplumes run into the eastern submarine ridge and propagate along the ridge downslope in a chaotic manner. The next, western ridge is crossed by the plume through several paths. Despite a number of discrepancies with observational data, the model reproduces many attributes of the flow. In particular, we argue that the temporal variability shown by the observations can largely be attributed to the unstable structure of the flow, where the temperature fluctuations are determined by the motion of the domes past the moorings. Our sensitivity studies show that while thermobaricity plays a role, its effect is small for the flows considered. Smoothing the ridges out demonstrate that their presence strongly affects the plume shape around the ridges. An increase in the bottom drag or viscosity leads to slowing down, and hence thickening and widening of the plume

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The seismic data were acquired north of the Knipovich Ridge on the western Svalbard margin during cruise MSM21/4. They were recorded using a Geometrics GeoEel streamer of either 120 channels (profiles p100-p208) or 88 channels (profiles p300-p805) with a group spacing of 1.56 m and a sampling rate of 2 kHz. A GI-Gun (2×1.7 l) with a main frequency of ~150 Hz was used as a source and operated at a shot interval of 6-8 s. Processing of profiles p100-p208 and p600-p805: Positions for each channel were calculated by backtracking along the profiles from the GI-Gun GPS positions. The shot gathers were analyzed for abnormal amplitudes below the seafloor reflection by comparing neighboring traces in different frequency bands within sliding time windows. To suppress surface-generated water noise, a tau-p filter was applied in the shot gather domain. Common mid-point (CMP) profiles were then generated through crooked-line binning with a CMP spacing of 1.5625 m. A zero-phase band-pass filter with corner frequencies of 60 Hz and 360 Hz was applied to the data. Based on regional velocity information from MCS data [Sarkar, 2012], an interpolated and extrapolated 3D interval velocity model was created below the digitized seafloor reflection of the high-resolution streamer data. This velocity model was used to apply a CMP stack and an amplitude-preserving Kirchhoff post-stack time migration. Processing of profiles p400-p500: Data were sampled at 0.5 ms and sorted into common midpoint (CMP) domain with a bin spacing of 5 m. Normal move out correction was carried out with a velocity of 1500 m s-1 and an Ormsby bandpass filter with corner frequencies at 40, 80, 600 and 1000 Hz was applied. The data were time migrated using the water velocity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relative paleointensity (RPI) method assumes that the intensity of post depositional remanent magnetization (PDRM) depends exclusively on the magnetic field strength and the concentration of the magnetic carriers. Sedimentary remanence is regarded as an equilibrium state between aligning geomagnetic and randomizing interparticle forces. Just how strong these mechanical and electrostatic forces are, depends on many petrophysical factors related to mineralogy, particle size and shape of the matrix constituents. We therefore test the hypothesis that variations in sediment lithology modulate RPI records. For 90 selected Late Quaternary sediment samples from the subtropical and subantarctic South Atlantic Ocean a combined paleomagnetic and sedimentological dataset was established. Misleading alterations of the magnetic mineral fraction were detected by a routine Fe/kappa test (Funk, J., von Dobeneck, T., Reitz, A., 2004. Integrated rock magnetic and geochemical quantification of redoxomorphic iron mineral diagenesis in Late Quaternary sediments from the Equatorial Atlantic. In: Wefer, G., Mulitza, S., Ratmeyer, V. (Eds.), The South Atlantic in the Late Quaternary: reconstruction of material budgets and current systems. Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, pp. 239-262). Samples with any indication of suboxic magnetite dissolution were excluded from the dataset. The parameters under study include carbonate, opal and terrigenous content, grain size distribution and clay mineral composition. Their bi- and multivariate correlations with the RPI signal were statistically investigated using standard techniques and criteria. While several of the parameters did not yield significant results, clay grain size and chlorite correlate weakly and opal, illite and kaolinite correlate moderately to the NRM/ARM signal used here as a RPI measure. The most influential single sedimentological factor is the kaolinite/illite ratio with a Pearson's coefficient of 0.51 and 99.9% significance. A three-member regression model suggests that matrix effects can make up over 50% of the observed RPI dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study provides insights into the composition and origin of ferropicrite dikes (FeOtot = 13 17 wt. %; MgO = 13 19 wt. %) and associated meimechite, picrite, picrobasalt, and basalt dikes found at Vestfjella, western Dronning Maud Land, Antarctica. The dikes crosscut Jurassic Karoo continental flood basalts (CFB) that were emplaced during the early stages of the breakup of the Gondwana supercontinent ~180 Ma ago. Selected samples (31 overall from at least eleven dikes) were analyzed for their mineral chemical, major element, trace element, and Sr, Nd, Pb, and Os isotopic compositions. The studied samples can be divided into two geochemically distinct types: (1) The depleted type (24 samples from at least nine dikes) is relatively depleted in the most incompatible elements and exhibits isotopic characteristics (e.g., initial εNd of +4.8 to +8.3 and initial 187Os/188Os of 0.1256 0.1277 at 180 Ma) similar to those of mid-ocean ridge basalts (MORB); (2) The enriched type (7 samples from at least two dikes) exhibits relatively enriched incompatible element and isotopic characteristics (e.g., initial εNd of +1.8 to +3.6 and initial 187Os/188Os of 0.1401 0.1425 at 180 Ma) similar to those of oceanic island basalts. Both magma types have escaped significant contamination by the continental crust. The depleted type is related to the main phase of Karoo magmatism and originated as highly magnesian (MgO up to 25 wt. %) partial melts at high temperatures (mantle potential temperature >1600 °C) and pressures (~5 6 GPa) from a sublithospheric, water-bearing, depleted peridotite mantle source. The enriched type sampled pyroxene-bearing heterogeneities that can be traced down to either recycled oceanic crust or melt-metasomatized portions of the sublithospheric or lithospheric mantle. The source of the depleted type represents a sublithospheric end-member source for many Karoo lavas and has subsequently been sampled by the MORBs of the Indian Ocean. These observations, together with the purported high temperatures, indicate that the Karoo CFBs were formed in an extensive melting episode caused mainly by internal heating of the upper mantle beneath the Gondwana supercontinent. My research supports the view that ferropicritic melts can be generated in several ways: the relative Fe-enrichment of mantle partial melts is most readily achieved by (1) relatively low degree of partial melting, (2) high pressure of partial melting, and (3) melting of enriched source components (e.g., pyroxenite and metasomatized peridotite). Ferropicritic whole-rock compositions could also result from accumulation, secondary alteration, and fractional crystallization, however, and caution is required when addressing the parental magma composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past-a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600 years. The recurrence period of earthquakes may range up to 1,000 years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore the tectono-magmatic processes in the western West Philippine Basin, Philippine Sea Plate, using bathymetric data acquired in 2003 and 2004. The northwestern part of the basin formed through a series of northwestward propagating rifts. We identify at least five sequences of propagating rifts, probably triggered by mantle flow away from the mantle thermal anomaly that is responsible for the origin of the Benham and Urdenata plateaus. Gravitational forces caused by along-axis topographic gradient and a similar to 30 degrees ridge reorientation appear to also be driving the rift propagations. The along-axis mantle flow appears to be reduced and deflected along the Luzon-Okinawa fracture zone, because the spreading system remained stable west of this major fault zone. North-east of the Benham plateau, a left-lateral fracture zone has turned into a NE-SW-trending spreading axis. As a result, a microplate developed at the triple junction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics and distribution patterns of detrital minerals (0.063 similar to 0.125 mm) in marine sediments provide a significant indicator for the identification of the origin of sediment. The detrital mineral composition of 219 surface sediment samples was analysed to identify the distribution of sediments within the western Philippine Sea. The area can be divided into three mineral provinces: ( 1) province east of the Philippine Trench, the detrital minerals in this province are mainly composed of calcareous or siliceous organisms, with the addition of volcanogenic minerals from an adjacent island arc; (II) middle mineral province, clastic minerals including feldspar, quartz and colorless volcanic glass, sourced from seamounts with intermediate-acid volcanic rock, or erupting intermediate-acid volcano; (III) province west of the Palau-Kyushii Ridge, the matter provenance within this province is complex; the small quantity of feldspar and quartz may be sourced from seamounts or erupting volcano with intermediate - acid composition, with a component of volcanic scoria sourced from a volcano erupting on the Palau-Kyushu Ridge. it is suggested that, ( I) Biogenic debris of the study area is closely related to water depth, with the amount of biogenic debris controlled by carbonate lysocline. (2) Volcaniclastic matter derived from the adjacent island are can be entrained by oceanic currents and transported towards the abyssal basin over a short distance. The weathering products of volcanic rocks of the submarine plateau ( e. g. I Benham Plateau) and adjacent ridges provide an important source of detrital sedimentation, and the influence scope of them is constrained by the intensity of submarine weathering. (3) Terrigenous sediments from the continent of Asia and the adjacent Philippine island arc have little influence on the sedimentation of this study area, and the felsic mineral component is probably sourced from volcanic seamounts of intermediate-acid composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crescent shaped Mascarene Plateau (southwestern Indian Ocean), some 2200 km in length, forms a partial barrier to the (predominantly westward) flow of the South Equatorial Current. Shallow areas of the Mascarene Plateau effectively form a large shelf sea without an associated coastline. Zooplankton sampling transects were made across the plateau and also the basin to the west, to investigate the role the partial interruption of flow has on zooplankton biomass and community structure over the region. Biomass data from Optical Plankton Counter (OPC) analysis, and variability in community structure from taxonomic analysis, appear to indicate that the obstruction by the plateau causes upwelling, nutrient enrichment and enhanced chlorophyll and secondary production levels downstream. The Mascarene Basin is clearly distinguishable from the ridge itself, and from the waters to the south and north, both in terms of size-distributed zooplankton biomass and community structure. Satellite remote sensing data, particularly remotely-sensed ocean colour imagery and the sea surface height anomaly (SSHA), indicate support for this hypothesis. A correlation was found between OPC biovolume and SSHA and sea surface temperature (SST), which may indicate the physical processes driving mesozooplankton variability in this area. Biomass values away from the influence of the ridge averaged 24 mg m-3, but downstream if the ridge biomass averaged 263 mg m-3. Copepods comprised 60% of the mean total organisms. Calanoid copepods varied considerably between regions, being lowest away from the influence of the plateau, where higher numbers of the cyclopoid copepods Oithona spp., Corycaeus spp. and Oncaea spp., and the harpacticoid Microsetella spp. were found.