983 resultados para walking speed


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term self-selected (i.e., individual or comfortable walking pace or speed) is commonly used in the literature (Frost, Dowling, Bar-Or, & Dyson, 1997; Jeng, Liao, Lai, & Hou, 1997; Wergel-Kolmert & Wohlfart, 1999; Maltais, Bar-Or, Pienynowski, & Galea, 2003; Browning & Kram, 2005; Browning, Baker, Herron, & Kram, 2006; Hills, Byrne, Wearing, & Armstrong, 2006) and is identified as the most efficient walking speed, with increased efficiency defined by lower oxygen uptake (VO^sub 2^) per unit mechanical work (Hoyt & Taylor, 1981; Taylor, Heglund, & Maloiy, 1982; Hreljac, 1993). [...] assessing individual and group differences in metabolic energy expenditure using oxygen uptake requires individuals to be comfortable with, and able to accommodate to, the equipment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Energy conserving processes reported in undernourished women during pregnancy are a recognised strategy to provide energy required to support fetal development. Women who are obese before conceiving arguably have sufficient fat stores to support the energy demands of pregnancy without the need to provoke energy conserving mechanisms. Objective We tested the hypothesis that obese women would demonstrate behavioural adaptation (i.e. decrease in self-selected walking (SSW) speed) but not metabolic compensation (i.e. decrease in resting metabolic rate (RMR) or metabolic cost of walking) during gestation. Design RMR, SSW speed, metabolic cost of walking, and anthropometry were measured in 23 women (BMI: 33.6 ± 2.5 kg/m2; 31 ± 4 years) at approximately weeks 15 (wk 15) and 30 (wk 30) of gestation. RMR was also measured in two cohorts of non-pregnant controls matched for age, weight and height of the pregnant cohort at wk 15 (N=23) and wk 30 (N=23). Results GWG varied widely (11.3 ± 5.4 kg) and 52% of women gained more weight than is recommended. RMR increased significantly by an average 177 ± 176 kcal/d (11±12%; P<0.0001); however the within-group variability was large. Both the metabolic cost of walking and SSW speed decreased significantly (P<0.01). While RMR increased in >80% of the cohort, the net oxygen cost of walking decreased in the same proportion of women. Conclusions While the increase in RMR was greater than was explained by weight gain, there was evidence of both behavioural and biological compensation in the metabolic cost of walking in obese women during gestation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Commercially available instrumented treadmill systems that provide continuous measures of temporospatial gait parameters have recently become available for clinical gait analysis. This study evaluated the level of agreement between temporospatial gait parameters derived from a new instrumented treadmill, which incorporated a capacitance-based pressure array, with those measured by a conventional instrumented walkway (criterion standard). Methods Temporospatial gait parameters were estimated from 39 healthy adults while walking over an instrumented walkway (GAITRite®) and instrumented treadmill system (Zebris) at matched speed. Differences in temporospatial parameters derived from the two systems were evaluated using repeated measures ANOVA models. Pearson-product-moment correlations were used to investigate relationships between variables measured by each system. Agreement was assessed by calculating the bias and 95% limits of agreement. Results All temporospatial parameters measured via the instrumented walkway were significantly different from those obtained from the instrumented treadmill (P < .01). Temporospatial parameters derived from the two systems were highly correlated (r, 0.79–0.95). The 95% limits of agreement for temporal parameters were typically less than ±2% of gait cycle duration. However, 95% limits of agreement for spatial measures were as much as ±5 cm. Conclusions Differences in temporospatial parameters between systems were small but statistically significant and of similar magnitude to changes reported between shod and unshod gait in healthy young adults. Temporospatial parameters derived from an instrumented treadmill, therefore, are not representative of those obtained from an instrumented walkway and should not be interpreted with reference to literature on overground walking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During gait termination at normal walking speed, older adults more frequently employ two-step responses, increasing their stopping distance and stopping time more than younger controls. This study investigated ageing effects on lower limb muscle recruitment patterns during stopping at three walking speeds. Twelve young male (26±3.7 years, range 19–30) and 12 gender-matched older participants (72±4.3 years, range 65–82) terminated walking at normal, medium and maximum speed. A visual stopping stimulus was presented 10 ms following either left or right heel-contact with no stimulus (catch) on 30% of trials. Electromyographic (EMG) activity was recorded from the tibialis anterior (TA), soleus (SOL), biceps femoris (BF), vastus lateralis (VL) and gluteus medius (GM). Older males more frequently (46% of trials) took two-steps to stop than young males (20%). The stance leg muscles responded significantly faster than the swing leg, and with increased speed, fewer swing limb muscles contributed to stopping. Older males were slower to respond with the stance leg, at 215 ms following the stimulus compared with 176 ms for the younger group. They also recruited fewer swing leg muscles with less frequent activation of the soleus and gluteus medius. Failure to activate muscles would provide less extensor torque to maintain the centre of gravity anterior to the forward base of support. This would decrease the total force opposing horizontal velocity in order to bring the body to rest and, as a consequence, encourage an additional step prior to stopping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data covers the speed at which passengers walk through Australian domestic airport terminals, based on their group size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose : This study was conducted to devise a new individual calibration method to enhance MTI accelerometer estimation of free-living level walking speed.

Method : Five female and five male middle-aged adults walked 400 m at 3.5, 4.5, and 5.5 km·h-1, and 800 m at 6.5 km·h-1 on an outdoor track, following a continuous protocol. Lap speed was controlled by a global positioning system (GPS) monitor. MTI counts-to-speed calibration equations were derived for each trial, for each subject for four such trials with each of four MTI, for each subject for the average MTI, and for the pooled data. Standard errors of the estimate (SEE) with and without individual calibration were compared. To assess accuracy of prediction of free-living walking speed, subjects also completed a self-paced, "brisk" 3-km walk wearing one of the four MTI, and differences between actual and predicted walking speed with and without individual calibration were examined.

Results : Correlations between MTI counts and walking speed were 0.90 without individual calibration, 0.98 with individual calibration for the average MTI, and 0.99 with individual calibration for a specific MTI. The SEE (mean ± SD) was 0.58 ± 0.30 km·h-1 without individual calibration, 0.19 ± 0.09 km·h-1 with individual calibration for the average MTI monitor, and 0.16 ± 0.08 km·h-1 with individual calibration for a specific MTI monitor. The difference between actual and predicted walking speed on the "brisk" 3-km walk was 0.06 ± 0.25 km·h-1 using individual calibration and 0.28 ± 0.63 km·h-1 without individual calibration (for specific accelerometers).

Conclusion : MTI accuracy in predicting walking speed without individual calibration might be sufficient for population-based studies but not for intervention trials. This individual calibration method will substantially increase precision of walking speed predicted from MTI counts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: For many patients clinical prescription of walking will be beneficial to health and accelerometers can be used to monitor their walking intensity, frequency and duration over many days. Walking intensity should include establishment of individual specific accelerometer count, walking speed and energy expenditure (VO2) relationships and this can be achieved using a walking protocol on a treadmill or overground. However, differences in gait mechanics during treadmill compared to overground walking may result in inaccurate estimations of free-living walking speed and VO2. The aims of this study were to compare the validity of track- and treadmill-based calibration methods for estimating free-living level walking speed and VO2 and to explain between-method differences in accuracy of estimation.

METHODS: Fifty healthy adults [32 women and 18 men; mean (SD): 40 (13) years] walked at four pre-determined speeds on an outdoor track and a treadmill, and completed three 1-km self-paced level walks while wearing an Actigraph monitor and a mobile oxygen analyser. Speed- and VO2-to-Actigraph count individual calibration equations were computed for each calibration method. Between-method differences in calibration equation parameters, prediction errors, and relationships of walking speed with VO2 and Actigraph counts were assessed. RESULTS: The treadmill-calibration equation overestimated free-living walking speed (on average, by 0.7 km · h(-1)) and VO2 (by 4.99 ml · kg(-1) · min(-1)), while the track-calibration equation did not. This was because treadmill walking, from which the calibration equation was derived, produced lower Actigraph counts and higher VO2 for a given walking speed compared to walking on a track. The prediction error associated with the use of the treadmill-calibration method increased with free-living walking speed. This issue was not observed when using the track-calibration method. CONCLUSIONS: The proposed track-based individual accelerometer calibration method can provide accurate and unbiased estimates of free-living walking speed and VO2 from walking. The treadmill-based calibration produces calibration equations that tend to substantially overestimate both VO2 and speed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Maintenance of good walking speed is essential to independent living. People with musculoskeletal disease often have reduced walking speed. We investigated determinants of slower walking, other than musculoskeletal disease, that might provide valuable additional targets for therapy. METHODS: We analyzed data from the Somerset and Avon Survey of Health, a community based survey of people aged over 35 years. A total of 2703 participants who reported hip or knee pain at baseline (1994/1995) were studied, and reassessed in 2002-2003; 1696 were available for followup, and walking speed was tested in 1074. Walking speed (m/s) was used as outcome measure. Baseline characteristics, including comorbidities and socioeconomic factors, were tested for their ability to predict reduced walking speed using multiple linear regression analysis. RESULTS: Age, female sex, and immobility at baseline were predictive of slower walking speed. Other independent risk factors included the presence of cataract, low socioeconomic status, intermittent claudication, and other cardiovascular conditions. Having a cataract was associated with a decrease of 0.10 m/s (95% CI 0.03, 0.16). Those in social class V had a walking speed 0.22 m/s (95% CI 0.126, 0.31) slower than those in social class I. CONCLUSION: Comorbidities, age, female sex, and lower socioeconomic position determine walking speed in people with joint pain. Issues such as poor vision and social-economic disadvantage may add to the effect of musculoskeletal disease, suggesting the need for a holistic approach to management of these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study was conducted to devise a new individual calibration method to enhance MTI accelerometer estimation of free-living level walking speed. Method: Five female and five male middle-aged adults walked 400 m at 3.5, 4.5, and 5.5 km(.)h(-1), and 800 in at 6.5 km(.)h(-1) on an outdoor track, following a continuous protocol. Lap speed was controlled by a global positioning system (GPS) monitor. MTI counts-to-speed calibration equations were derived for each trial, for each subject for four such trials with each of four MTI, for each subject for the average MTI. and for the pooled data. Standard errors of the estimate (SEE) with and without individual calibration were compared. To assess accuracy of prediction of free-living walking speed, subjects also completed a self-paced, brisk 3-km walk wearing one of the four MTI, and differences between actual and predicted walking speed with and without individual calibration were examined. Results: Correlations between MTI counts and walking speed were 0.90 without individual calibration, 0.98 with individual calibration for the average MTI. and 0.99 with individual calibration for a specific MTI. The SEE (mean +/- SD) was 0.58 +/- 0.30 km(.)h(-1) without individual calibration, 0.19 +/- 0.09 km h(-1) with individual calibration for the average MTI monitor, and 0.16 +/- 0.08 km(.)h(-1) with individual calibration for a specific MTI monitor. The difference between actual and predicted walking speed on the brisk 3-km walk was 0.06 +/- 0.25 km(.)h(-1) using individual calibration and 0.28 +/- 0.63 km(.)h(-1) without individual calibration (for specific accelerometers). Conclusion: MTI accuracy in predicting walking speed without individual calibration might be sufficient for population-based studies but not for intervention trials. This individual calibration method will substantially increase precision of walking speed predicted from MTI counts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aims were to determine whether measures of acceleration of the legs and back of dairy cows while they walk could help detect changes in gait or locomotion associated with lameness and differences in the walking surface. In 2 experiments, 12 or 24 multiparous dairy cows were fitted with five 3-dimensional accelerometers, 1 attached to each leg and 1 to the back, and acceleration data were collected while cows walked in a straight line on concrete (experiment 1) or on both concrete and rubber (experiment 2). Cows were video-recorded while walking to assess overall gait, asymmetry of the steps, and walking speed. In experiment 1, cows were selected to maximize the range of gait scores, whereas no clinically lame cows were enrolled in experiment 2. For each accelerometer location, overall acceleration was calculated as the magnitude of the 3-dimensional acceleration vector and the variance of overall acceleration, as well as the asymmetry of variance of acceleration within the front and rear pair of legs. In experiment 1, the asymmetry of variance of acceleration in the front and rear legs was positively correlated with overall gait and the visually assessed asymmetry of the steps (r ≥0.6). Walking speed was negatively correlated with the asymmetry of variance of the rear legs (r=−0.8) and positively correlated with the acceleration and the variance of acceleration of each leg and back (r ≥0.7). In experiment 2, cows had lower gait scores [2.3 vs. 2.6; standard error of the difference (SED)=0.1, measured on a 5-point scale] and lower scores for asymmetry of the steps (18.0 vs. 23.1; SED=2.2, measured on a continuous 100-unit scale) when they walked on rubber compared with concrete, and their walking speed increased (1.28 vs. 1.22m/s; SED=0.02). The acceleration of the front (1.67 vs. 1.72g; SED=0.02) and rear (1.62 vs. 1.67g; SED=0.02) legs and the variance of acceleration of the rear legs (0.88 vs. 0.94g; SED=0.03) were lower when cows walked on rubber compared with concrete. Despite the improvements in gait score that occurred when cows walked on rubber, the asymmetry of variance of acceleration of the front leg was higher (15.2 vs. 10.4%; SED=2.0). The difference in walking speed between concrete and rubber correlated with the difference in the mean acceleration and the difference in the variance of acceleration of the legs and back (r ≥0.6). Three-dimensional accelerometers seem to be a promising tool for lameness detection on farm and to study walking surfaces, especially when attached to a leg.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Visual reaction time (RT) was measured in 10 older men (mean age, 71.1 years) and gender-matched controls (mean age, 26.3 years) when standing (single task) and when walking on a motor-driven treadmill (dual task). There were 90 quasirandomly presented trials over 15 min in each condition. Longer mean and median RTs were observed in the dual task compared to the single task. Older males had significantly slower mean and median RTs (315 and 304 ms, respectively) than the younger group (273 and 266 ms, respectively) in both task conditions. There were no age or condition effects on with in-subject variability. Both groups showed a trend of increasing RT over the 90 single task trials but when walking only the younger group slowed. These novel findings demonstrate high but sustained attention by older adults when walking. It is proposed that the motor task's attentional demands might contribute to their slower preferred walking speed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: It is not yet established if the use of body weight support (BWS) systems for gait training is effective per se or if it is the combination of BWS and treadmill that improves the locomotion of individuals with gait impairment. This study investigated the effects of gait training on ground level with partial BWS in individuals with stroke during overground walking with no BWS.Methods: Twelve individuals with chronic stroke (53.17 +/- 7.52 years old) participated of a gait training program with BWS during overground walking, and were evaluated before and after the gait training period. In both evaluations, individuals were videotaped walking at a self-selected comfortable speed with no BWS. Measurements were obtained for mean walking speed, step length, stride length and speed, toe-clearance, durations of total double stance and single-limb support, and minimum and maximum foot, shank, thigh, and trunk segmental angles.Results: After gait training, individuals walked faster, with symmetrical steps, longer and faster strides, and increased toe-clearance. Also, they displayed increased rotation of foot, shank, thigh, and trunk segmental angles on both sides of the body. However, the duration of single-limb support remained asymmetrical between each side of the body after gait training.Conclusions: Gait training individuals with chronic stroke with BWS during overground walking improved walking in terms of temporal-spatial parameters and segmental angles. This training strategy might be adopted as a safe, specific and promising strategy for gait rehabilitation after stroke.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose. Fatigue has been pointed as a fall risk in the elderly; however, the effects of prolonged gait on neuromuscular recruitment and on its pattern remain unknown. The aim of this study was to evaluate the effects of prolonged gait on neuromuscular recruitment levels and spatial-temporal gait variables. Methods. Eight healthy older women (age: 72.63 ± 6.55 years) walked at their preferred walking speed for twenty minutes on a treadmill. The Root Mean Square (RMS) from the vastus-lateralis, femoral biceps, tibialis anterior and lateral gastrocnemius muscles were determined at the first and last minute of the test during the moments of Heel Strike (HS), Terminal Stance and Terminal Swing (TS). In addition, coactivation in the knee and ankle as well as the stride cadence and length were measured in the test. The two RMS data (taken at the first and last minute) were compared by means of a Student's t-test. Results. Twenty minutes of walking induced fatigue in the subjects, as observed through an increase in RMS, notably during the HS and TS. Coactivation was also influenced by the prolonged gait test. The only gait phase where a risk of falling was enhanced was the HS. Nonetheless, subjects developed strategies to maintain a safe motor pattern, which was evidenced by an increase in stride length and a decrease in stride cadence. Conclusion. Tests lasting just twenty minutes on a treadmill were enough to induce fatigue in older adults. However, the level of fatigue was not enough to present a danger or fall risk to elderly individuals.