996 resultados para vortex-induced vibrations(VIV)
Resumo:
A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-induced Vibrations (VIV). Its nonlinear hydrodynamic effects oil the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-ill, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is ill good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.
Resumo:
El presente trabajo de investigación se ocupa del estudio de las vibraciones verticales inducidas por vórtices (VIV) en aquellos puentes que, por sus características geométricas y propiedades dinámicas, muestran cierta sensibilidad este tipo de fenómeno aeroelástico. El objeto principal es el análisis del mecanismo de interacción viento-estructura sobre secciones no fuseladas de geometría simple, con objeto de realizar una adecuada caracterización del problema y poder abordar posteriormente el análisis de otras secciones de geometría más compleja, representativas de los principales elementos estructurales de los puentes, como arcos, tableros, torres y pilas. Este aspecto es fundamental durante la fase de diseño del puente, donde deberán tenerse en cuenta también una serie de detalles que pueden influir significativamente su sensibilidad ante problemas aerodinámicos, como la morfología y dimensiones principales de la sección transversal del tablero, la disposición de barreras de seguridad y barreras cortaviento, o las riostras que unen diferentes elementos estructurales. La configuración de dos elementos en tándem o la construcción de un puente en las inmediaciones de otro existente son otros aspectos a considerar respecto a la sensibilidad frente a efectos aeroelásticos. El estudio se ha llevado a cabo principalmente mediante la implementación de simulaciones numéricas que reproducen la interacción entre la corriente de aire y secciones representativas de modelos estructurales, a partir de un código CFD basado en el método de las partículas de vórtices (VPM), siguiendo por tanto un esquema Lagrangiano. Los resultados han sido validados con datos experimentales existentes, valores procedentes de ensayos en túnel de viento y registros reales a partir de diferentes casos de estudio: Alconétar (2006), Niterói (1980), Trans- Tokyo Bay (1995) y Volgogrado (2010). Finalmente, se propone un modelo semi-empírico para la estimación del rango de velocidades críticas y amplitudes de oscilación basado en la utilización de las derivadas de flameo de Scanlan, y la densidad espectral de las fuerzas aerodinámicas en el dominio de la frecuencia. The present research work concerns the study of vertical vortex-induced vibrations (VIV) in bridges which show certain sensitivity to this type of aeroelastic phenomenon. It focuses on the analysis of the wind-structure interaction mechanism on bluff sections, with the objective of making a good characterisation of the problem and subsequently addressing the analysis of sections with a complex geometry, which are representative of the bridge structural elements, such as arches, decks, towers and piers. This issue is of relative importance during the bridge design phase, since minor details of the aforementioned elements can significantly influence its sensitivity to aerodynamic problems. The shape and main dimensions of the deck cross section, the addition of safety barriers and windshields, the presence of braces to enhance the structure mechanical properties, the utilisation of cross sections in tandem arrangement, or the erection of a new bridge in the vicinity of another existing one are some of the aspects to be considered regarding the sensitivity to the aeroelastic effects. The study has been carried out mainly through the implementation of numerical simulations that reproduces the interaction between the airflow and the representative cross section of a structural bridge model, by the use of a CFD code based on the vortex particle method (VPM), thus following a Lagrangian scheme. The results have been validated with existing experimental data, values from wind tunnel tests and full scale observations from the different case studies: Alconétar (2006), Niterói (1980), Trans-Tokyo Bay (1995) and Volgograd (2010). Finally, a new semi-empirical model is proposed for the estimation of the critical wind velocity ranges and oscillation amplitudes based on the use of the Scanlan’s flutter derivatives and the power spectral density of aerodynamic force time history in the frequency domain.
Resumo:
Based on similarity analyses, a series of experiments have been conducted with a newly established hydro-elastic facility to investigate the transverse vortex-induced vibrations (VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean currents. Typical characteristics of coupling processes between pipe vibration and soil scour in the currents have been summarized for Case 1: pipe is laid above seabed and Case 11: pipe is partially embedded in seabed on the basis of the experimental observations. Pipe vibration and the corresponding local scour are usually two coupled physical processes leading to an equilibrium state. The influence of initial gap-to-diameter ratio (e(0)/D) on the interaction between pipe vibration and local scour has been studied. Experimental results show that the critical values of V-r for the initiation of VIVs of the pipe near an erodible sand bed get bigger with decreasing initial gap-to-diameter ratio within the examined range of e(0)/D (-0.25 < e(0)/D < 0.75). The comparison of the pipe vibrations near an erodible soil with those near a rigid boundary and under wall-free conditions indicates that the vibration amplitudes of the pipe near an erodible sand bed are close to the curve fit under wall-free conditions; nevertheless, for the same stability parameter, the maximum amplitudes for the VIV coupled with local scour increase with the increase of initial gap-to-diameter ratio. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A vortex-induced vibration (VIV) model is presented for predicting the nonlinear dynamic response of submerged floating tunnel (SFT) tethers which are subjected to wave, current and tunnel oscillatory displacements at their upper end in horizontal and vertical directions. A nonlinear fluid force formula is introduced in this model, and the effect of the nonlinearity of tether is investigated. First, the tunnel is stationary and the tether vibrates due to the vortices shedding. The calculated results show that the cross-flow amplitude of VIV decreases compared with the linear model. However the in-line amplitude of VIV increases. Next, the periodical oscillation of tunnel is considered. The oscillation caused by wave forces plays the roles of parametric exciter and forcing exciter to the VIV of tether. The time history of displacement of the tether mid-span is obtained by the proposed model. It is shown that the in-line amplitude increases obviously and the corresponding frequency is changed. The cross-flow amplitude exhibits a periodic behavior.
Resumo:
This paper describes an experimental investigation into the effect of restricting the vortex-induced vibrations of a spring-mounted rigid cylinder by means of stiff mechanical endstops. Cases of both asymmetric and symmetric restraint are investigated. Results show that limiting the amplitude of the vibrations strongly affects the dynamics of the cylinder, particularly when the offset is small. Fluid-structure interaction is profoundly affected, and the well-known modes of vortex shedding observed with a linear elastic system are modified or absent. There is no evidence of lock-in, and the dominant impact frequency corresponds to a constant Strouhal number of 0.18. The presence of an endstop on one side of the motion can lead to large increases in displacements in the opposite direction. Attention is also given to the nature of the developing chaotic motion, and to impact velocities, which in single-sided impacts approach the maximum velocity of a cylinder with linear compliance undergoing VIV at lock-in. With symmetrical endstops, impact velocities were about one-half of this. Lift coefficients are computed from an analysis of the cylinder’s motion between impacts.
Resumo:
Here, Vortex-Induced Vibrations (VIVs) of a circular cylinder are analyzed as a potential source for energy harvesting. To this end, VIV is described by a one-degree-of-freedom model where fluid forces are introduced from experimental data from forced vibration tests. The influence of some influencing parameters, like the mass ratio m∗ or the mechanical damping ζ in the energy conversion factor is investigated. The analysis reveals that: (i) the maximum efficiency ηM is principally influenced by the mass-damping parameter m∗ζ and there is an optimum value of m∗ζ where ηM presents a maximum; (ii) the range of reduced velocities with significant efficiency is mainly governed by m∗, and (iii) it seems that encouraging high efficiency values can be achieved for high Reynolds numbers.
Resumo:
对单向水流作用下近壁管道横向涡激振动进行了实验模拟,重点探讨了管道与壁面间隙比(e/D)对管道涡激振动幅值和涡激振动频率响应特性的影响规律.实验结果表明,管道与壁面间隙宽度对管道涡激振动特性有较明显影响.在较大间隙比(e/D>0.66)下,管道振幅随着Vr数的增大先快速增长到最大值,然后平缓下降;在振动初期(即Vr数较小时),管道振动频率变化基本符合Strouhal规律;在振动中后期(即Vr数较大时),管道振动频率变化不符合Strouhal规律,而在管道固有频率附近缓慢增长.在较小间隙比(e/D<0.30)下,管道振幅随Vr数的增大先平缓上升到最大值,随后较快速下降;在振动初期,管道振动频率变化不遵循Strouhal规律;在整个振动范围内,与较大间隙比情况相比,随着Vr数增加,管道振动频率增长幅度明显较大.
Resumo:
Unlike most previous studies on vortex- induced vibrations of a cylinder far from a boundary, this paper focuses On the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results Of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand ( 1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex- induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of V, and the dimensionless amplitude ratio A(max)/D become larger with the decrease of the gap-to-diameter ratio e/D. Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while the pipeline frequency responses are affected slightly by the stability parameter.
Resumo:
The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.
Resumo:
In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carried out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-critical flow regime; (2) with increasing gap-to-diameter ratio (e (0)/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/f (n) ) has a slight variation for the case of larger values of e (0)/D (e (0)/D > 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylinder between the larger gap-to-diameter ratios (e (0)/D > 0.66) and the smaller ones (e (0)/D < 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of V (r) number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of V (r) and the frequency ratio (f/f (n) ) become larger.
Resumo:
ACKNOWLEDGMENTS This work is supported by the National Subsea Research Institute (NSRI) UK.
Resumo:
In the present work, we study the transverse vortex-induced vibrations of an elastically mounted rigid cylinder in a fluid flow. We employ a technique to accurately control the structural damping, enabling the system to take on both negative and positive damping. This permits a systematic study of the effects of system mass and damping on the peak vibration response. Previous experiments over the last 30 years indicate a large scatter in peak-amplitude data ($A^*$) versus the product of mass–damping ($\alpha$), in the so-called ‘Griffin plot’. A principal result in the present work is the discovery that the data collapse very well if one takes into account the effect of Reynolds number ($\mbox{\textit{Re}}$), as an extra parameter in a modified Griffin plot. Peak amplitudes corresponding to zero damping ($A^*_{{\alpha}{=}0}$), for a compilation of experiments over a wide range of $\mbox{\textit{Re}}\,{=}\,500-33000$, are very well represented by the functional form $A^*_{\alpha{=}0} \,{=}\, f(\mbox{\textit{Re}}) \,{=}\, \log(0.41\,\mbox{\textit{Re}}^{0.36}$). For a given $\mbox{\textit{Re}}$, the amplitude $A^*$ appears to be proportional to a function of mass–damping, $A^*\propto g(\alpha)$, which is a similar function over all $\mbox{\textit{Re}}$. A good best-fit for a wide range of mass–damping and Reynolds number is thus given by the following simple expression, where $A^*\,{=}\, g(\alpha)\,f(\mbox{\textit{Re}})$: \[ A^* \,{=}\,(1 - 1.12\,\alpha + 0.30\,\alpha^2)\,\log (0.41\,\mbox{\textit{Re}}^{0.36}). \] In essence, by using a renormalized parameter, which we define as the ‘modified amplitude’, $A^*_M\,{=}\,A^*/A^*_{\alpha{=}0}$, the previously scattered data collapse very well onto a single curve, $g(\alpha)$, on what we refer to as the ‘modified Griffin plot’. There has also been much debate over the last three decades concerning the validity of using the product of mass and damping (such as $\alpha$) in these problems. Our results indicate that the combined mass–damping parameter ($\alpha$) does indeed collapse peak-amplitude data well, at a given $\mbox{\textit{Re}}$, independent of the precise mass and damping values, for mass ratios down to $m^*\,{=}\,1$.
Resumo:
Based on similarity analyses, the flow-induced vibrations of a near-wall cylinder with 2 degrees of freedom are investigated experimentally by employing a hydroelastic apparatus in conjunction with a flume. The cylinder's vibration amplitude, vibration frequency and vortex shedding frequency were measured and analyzed. The effects of gap-to-diameter ratio (e,ID) upon the vibration responses are further investigated. The experimental results indicate that, when the reduced velocity (Vr) is small (e.g. Vr = 1.2 similar to 2.6), only streamwise vibration occurs, and its frequency is quite close to its natural frequency in still water. When increasing Vr (e.g. Vr > 3.4), both streamwise and transverse vibrations of the near-wall cylinder may occur. In the examined range of gap-to-diameter ratio (0.42 < e(0)/D < 2.68), 2 vibration stages (in terms of Vr) of streamwise vibrations usually exist: First Streamwise Vibration (FSV) and Second Streamwise Vibration (SSV). In the SSV stage, the vortex shedding frequency may either undergo a jump to that of the streamwise vibration, or stay consistent with that of the transverse vibration. The amplitudes of transverse vibration are usually much larger than those of streamwise vibration for the same value of e(0)/D. The maximum amplitudes of both streamwise and transverse vibration get larger with the increase of e(0)/D (0.42 < e(0)/D < 2.68).
Resumo:
Most of the existing researches either focus on vortex-induced-vibrations (VIV) of a pipeline near a rigid boundary, or on seabed scour around a fixed pipeline. In the fields, pipeline vibration and seabed scour are actually always coupled. Based on the similarity analysis, a series of tests were conducted with a hydro-elastic facility to investigate the influence of pipe vibration on the local scour and the effects of scour process on the pipeline dynamic responses. Experimental results indicate that, there exist two phases in the process of sand scouring around the pipeline with small embedment, i.e. Phase I: scour beneath pipe without VIV, and Phase II: scour with VIV of pipe. It is also found that the gap-to-diameter ratio (e/D) has much effect upon the scour depth for the fixed pipes. For a given value of e/D, the vibrating pipes with close proximity to seabed may induce a deeper scour hole than the fixed ones. Within the examined gap-to-diameter ratio range (425 < e/D < 0.75), the influences of gap-to-diameter ratio on the maximum values of scour-depth for the case of vibrating pipes are not as much as those for the case of fixed pipes.