991 resultados para visual motion
Resumo:
Embodied theories of cognition propose that neural substrates used in experiencing the referent of a word, for example perceiving upward motion, should be engaged in weaker form when that word, for example ‘rise’, is comprehended. Motivated by the finding that the perception of irrelevant background motion at near-threshold, but not supra-threshold, levels interferes with task execution, we assessed whether interference from near-threshold background motion was modulated by its congruence with the meaning of words (semantic content) when participants completed a lexical decision task (deciding if a string of letters is a real word or not). Reaction times for motion words, such as ‘rise’ or ‘fall’, were slower when the direction of visual motion and the ‘motion’ of the word were incongruent — but only when the visual motion was at nearthreshold levels. When motion was supra-threshold, the distribution of error rates, not reaction times, implicated low-level motion processing in the semantic processing of motion words. As the perception of near-threshold signals is not likely to be influenced by strategies, our results support a close contact between semantic information and perceptual systems.
Resumo:
Visual motion cues play an important role in animal and humans locomotion without the need to extract actual ego-motion information. This paper demonstrates a method for estimating the visual motion parameters, namely the Time-To-Contact (TTC), Focus of Expansion (FOE), and image angular velocities, from a sparse optical flow estimation registered from a downward looking camera. The presented method is capable of estimating the visual motion parameters in a complicated 6 degrees of freedom motion and in real time with suitable accuracy for mobile robots visual navigation.
Resumo:
The primate visual motion system performs numerous functions essential for survival in a dynamic visual world. Prominent among these functions is the ability to recover and represent the trajectories of objects in a form that facilitates behavioral responses to those movements. The first step toward this goal, which consists of detecting the displacement of retinal image features, has been studied for many years in both psychophysical and neurobiological experiments. Evidence indicates that achievement of this step is computationally straightforward and occurs at the earliest cortical stage. The second step involves the selective integration of retinal motion signals according to the object of origin. Realization of this step is computationally demanding, as the solution is formally underconstrained. It must rely--by definition--upon utilization of retinal cues that are indicative of the spatial relationships within and between objects in the visual scene. Psychophysical experiments have documented this dependence and suggested mechanisms by which it may be achieved. Neurophysiological experiments have provided evidence for a neural substrate that may underlie this selective motion signal integration. Together they paint a coherent portrait of the means by which retinal image motion gives rise to our perceptual experience of moving objects.
Resumo:
Models of visual motion processing that introduce priors for low speed through Bayesian computations are sometimes treated with scepticism by empirical researchers because of the convenient way in which parameters of the Bayesian priors have been chosen. Using the effects of motion adaptation on motion perception to illustrate, we show that the Bayesian prior, far from being convenient, may be estimated on-line and therefore represents a useful tool by which visual motion processes may be optimized in order to extract the motion signals commonly encountered in every day experience. The prescription for optimization, when combined with system constraints on the transmission of visual information, may lead to an exaggeration of perceptual bias through the process of adaptation. Our approach extends the Bayesian model of visual motion proposed byWeiss et al. [Weiss Y., Simoncelli, E., & Adelson, E. (2002). Motion illusions as optimal perception Nature Neuroscience, 5:598-604.], in suggesting that perceptual bias reflects a compromise taken by a rational system in the face of uncertain signals and system constraints. © 2007.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of visual motion. Based on these data and evidence from neurophysiological and neuroimaging studies we discuss the neural mechanisms likely to underlie this effect.
Resumo:
The aim of this functional magnetic resonance imaging (fMRI) study was to identify human brain areas that are sensitive to the direction of auditory motion. Such directional sensitivity was assessed in a hypothesis-free manner by analyzing fMRI response patterns across the entire brain volume using a spherical-searchlight approach. In addition, we assessed directional sensitivity in three predefined brain areas that have been associated with auditory motion perception in previous neuroimaging studies. These were the primary auditory cortex, the planum temporale and the visual motion complex (hMT/V5+). Our whole-brain analysis revealed that the direction of sound-source movement could be decoded from fMRI response patterns in the right auditory cortex and in a high-level visual area located in the right lateral occipital cortex. Our region-of-interest-based analysis showed that the decoding of the direction of auditory motion was most reliable with activation patterns of the left and right planum temporale. Auditory motion direction could not be decoded from activation patterns in hMT/V5+. These findings provide further evidence for the planum temporale playing a central role in supporting auditory motion perception. In addition, our findings suggest a cross-modal transfer of directional information to high-level visual cortex in healthy humans.
Resumo:
The processes underlying the perceptual analysis of visual form are believed to have minimal interaction with those subserving the perception of visual motion (Livingstone and Hubel, 1987; Victor and Conte, 1990). Recent reports of functionally and anatomically segregated parallel streams in the primate visual cortex seem to support this hypothesis (Ungerlieder and Mishkin, 1982; VanEssen and Maunsell, 1983; Shipp and Zeki, 1985; Zeki and Shipp, 1988; De Yoe et al., 1994). Here we present perceptual evidence that is at odds with this view and instead suggests strong symmetric interactions between the form and motion processes. In one direction, we show that the introduction of specific static figural elements, say 'F', in a simple motion sequence biases an observer to perceive a particular motion field, say 'M'. In the reverse direction, the imposition of the same motion field 'M' on the original sequence leads the observer to perceive illusory static figural elements 'F'. A specific implication of these findings concerns the possible existence of (what we call) motion end-stopped units in the primate visual system. Such units might constitute part of a mechanism for signalling subjective occluding contours based on motion-field discontinuities.
Resumo:
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
The right and left visual hemifields are represented in different cerebral hemispheres and are bound together by connections through the corpus callosum. Much has been learned on the functions of these connections from split-brain patients [1-4], but little is known about their contribution to conscious visual perception in healthy humans. We used diffusion tensor imaging and functional magnetic resonance imaging to investigate which callosal connections contribute to the subjective experience of a visual motion stimulus that requires interhemispheric integration. The "motion quartet" is an ambiguous version of apparent motion that leads to perceptions of either horizontal or vertical motion [5]. Interestingly, observers are more likely to perceive vertical than horizontal motion when the stimulus is presented centrally in the visual field [6]. This asymmetry has been attributed to the fact that, with central fixation, perception of horizontal motion requires integration across hemispheres whereas perception of vertical motion requires only intrahemispheric processing [7]. We are able to show that the microstructure of individually tracked callosal segments connecting motion-sensitive areas of the human MT/V5 complex (hMT/V5+; [8]) can predict the conscious perception of observers. Neither connections between primary visual cortex (V1) nor other surrounding callosal regions exhibit a similar relationship.
Resumo:
We demonstrate performance-related changes in cortical and cerebellar activity. The largest learning-dependent changes were observed in the anterior lateral cerebellum, where the extent and intensity of activation correlated inversely with psychophysical performance. After learning had occurred (a few minutes), the cerebellar activation almost disappeared; however, it was restored when the subjects were presented with a novel, untrained direction of motion for which psychophysical performance also reverted to chance level. Similar reductions in the extent and intensity of brain activations in relation to learning occurred in the superior colliculus, anterior cingulate, and parts of the extrastriate cortex. The motion direction-sensitive middle temporal visual complex was a notable exception, where there was an expansion of the cortical territory activated by the trained stimulus. Together, these results indicate that the learning and representation of visual motion discrimination are mediated by different, but probably interacting, neuronal subsystems.
Resumo:
The visual responses of neurons in the cerebral cortex were first adequately characterized in the 1960s by D. H. Hubel and T. N. Wiesel [(1962) J. Physiol. (London) 160, 106-154; (1968) J. Physiol. (London) 195, 215-243] using qualitative analyses based on simple geometric visual targets. Over the past 30 years, it has become common to consider the properties of these neurons by attempting to make formal descriptions of these transformations they execute on the visual image. Most such models have their roots in linear-systems approaches pioneered in the retina by C. Enroth-Cugell and J. R. Robson [(1966) J. Physiol. (London) 187, 517-552], but it is clear that purely linear models of cortical neurons are inadequate. We present two related models: one designed to account for the responses of simple cells in primary visual cortex (V1) and one designed to account for the responses of pattern direction selective cells in MT (or V5), an extrastriate visual area thought to be involved in the analysis of visual motion. These models share a common structure that operates in the same way on different kinds of input, and instantiate the widely held view that computational strategies are similar throughout the cerebral cortex. Implementations of these models for Macintosh microcomputers are available and can be used to explore the models' properties.
Resumo:
Developmental learning disabilities such as dyslexia and dyscalculia have a high rate of co-occurrence in pediatric populations, suggesting that they share underlying cognitive and neurophysiological mechanisms. Dyslexia and other developmental disorders with a strong heritable component have been associated with reduced sensitivity to coherent motion stimuli, an index of visual temporal processing on a millisecond time-scale. Here we examined whether deficits in sensitivity to visual motion are evident in children who have poor mathematics skills relative to other children of the same age. We obtained psychophysical thresholds for visual coherent motion and a control task from two groups of children who differed in their performance on a test of mathematics achievement. Children with math skills in the lowest 10% in their cohort were less sensitive than age-matched controls to coherent motion, but they had statistically equivalent thresholds to controls on a coherent form control measure. Children with mathematics difficulties therefore tend to present a similar pattern of visual processing deficit to those that have been reported previously in other developmental disorders. We speculate that reduced sensitivity to temporally defined stimuli such as coherent motion represents a common processing deficit apparent across a range of commonly co-occurring developmental disorders.