971 resultados para unified framework
Resumo:
This paper develops a framework for estimating household preferences for school and neighborhood attributes in the presence of sorting. It embeds a boundary discontinuity design in a heterogeneous residential choice model, addressing the endogeneity of school and neighborhood characteristics. The model is estimated using restricted-access Census data from a large metropolitan area, yielding a number of new results. First, households are willing to pay less than 1 percent more in house prices - substantially lower than previous estimates - when the average performance of the local school increases by 5 percent. Second, much of the apparent willingness to pay for more educated and wealthier neighbors is explained by the correlation of these sociodemographic measures with unobserved neighborhood quality. Third, neighborhood race is not capitalized directly into housing prices; instead, the negative correlation of neighborhood percent black and housing prices is due entirely to the fact that blacks live in unobservably lower-quality neighborhoods. Finally, there is considerable heterogeneity in preferences for schools and neighbors, with households preferring to self-segregate on the basis of both race and education. © 2007 by The University of Chicago. All rights reserved.
Resumo:
Les logiciels sont de plus en plus complexes et leur développement est souvent fait par des équipes dispersées et changeantes. Par ailleurs, de nos jours, la majorité des logiciels sont recyclés au lieu d’être développés à partir de zéro. La tâche de compréhension, inhérente aux tâches de maintenance, consiste à analyser plusieurs dimensions du logiciel en parallèle. La dimension temps intervient à deux niveaux dans le logiciel : il change durant son évolution et durant son exécution. Ces changements prennent un sens particulier quand ils sont analysés avec d’autres dimensions du logiciel. L’analyse de données multidimensionnelles est un problème difficile à résoudre. Cependant, certaines méthodes permettent de contourner cette difficulté. Ainsi, les approches semi-automatiques, comme la visualisation du logiciel, permettent à l’usager d’intervenir durant l’analyse pour explorer et guider la recherche d’informations. Dans une première étape de la thèse, nous appliquons des techniques de visualisation pour mieux comprendre la dynamique des logiciels pendant l’évolution et l’exécution. Les changements dans le temps sont représentés par des heat maps. Ainsi, nous utilisons la même représentation graphique pour visualiser les changements pendant l’évolution et ceux pendant l’exécution. Une autre catégorie d’approches, qui permettent de comprendre certains aspects dynamiques du logiciel, concerne l’utilisation d’heuristiques. Dans une seconde étape de la thèse, nous nous intéressons à l’identification des phases pendant l’évolution ou pendant l’exécution en utilisant la même approche. Dans ce contexte, la prémisse est qu’il existe une cohérence inhérente dans les évènements, qui permet d’isoler des sous-ensembles comme des phases. Cette hypothèse de cohérence est ensuite définie spécifiquement pour les évènements de changements de code (évolution) ou de changements d’état (exécution). L’objectif de la thèse est d’étudier l’unification de ces deux dimensions du temps que sont l’évolution et l’exécution. Ceci s’inscrit dans notre volonté de rapprocher les deux domaines de recherche qui s’intéressent à une même catégorie de problèmes, mais selon deux perspectives différentes.
Resumo:
Regularization Networks and Support Vector Machines are techniques for solving certain problems of learning from examples -- in particular the regression problem of approximating a multivariate function from sparse data. We present both formulations in a unified framework, namely in the context of Vapnik's theory of statistical learning which provides a general foundation for the learning problem, combining functional analysis and statistics.
Resumo:
Automatic generation of classification rules has been an increasingly popular technique in commercial applications such as Big Data analytics, rule based expert systems and decision making systems. However, a principal problem that arises with most methods for generation of classification rules is the overfit-ting of training data. When Big Data is dealt with, this may result in the generation of a large number of complex rules. This may not only increase computational cost but also lower the accuracy in predicting further unseen instances. This has led to the necessity of developing pruning methods for the simplification of rules. In addition, classification rules are used further to make predictions after the completion of their generation. As efficiency is concerned, it is expected to find the first rule that fires as soon as possible by searching through a rule set. Thus a suit-able structure is required to represent the rule set effectively. In this chapter, the authors introduce a unified framework for construction of rule based classification systems consisting of three operations on Big Data: rule generation, rule simplification and rule representation. The authors also review some existing methods and techniques used for each of the three operations and highlight their limitations. They introduce some novel methods and techniques developed by them recently. These methods and techniques are also discussed in comparison to existing ones with respect to efficient processing of Big Data.
Resumo:
In electronic commerce, systems development is based on two fundamental types of models, business models and process models. A business model is concerned with value exchanges among business partners, while a process model focuses on operational and procedural aspects of business communication. Thus, a business model defines the what in an e-commerce system, while a process model defines the how. Business process design can be facilitated and improved by a method for systematically moving from a business model to a process model. Such a method would provide support for traceability, evaluation of design alternatives, and seamless transition from analysis to realization. This work proposes a unified framework that can be used as a basis to analyze, to interpret and to understand different concepts associated at different stages in e-Commerce system development. In this thesis, we illustrate how UN/CEFACT’s recommended metamodels for business and process design can be analyzed, extended and then integrated for the final solutions based on the proposed unified framework. Also, as an application of the framework, we demonstrate how process-modeling tasks can be facilitated in e-Commerce system design. The proposed methodology, called BP3 stands for Business Process Patterns Perspective. The BP3 methodology uses a question-answer interface to capture different business requirements from the designers. It is based on pre-defined process patterns, and the final solution is generated by applying the captured business requirements by means of a set of production rules to complete the inter-process communication among these patterns.
Resumo:
Koopman et al. (2014) developed a method to consistently decompose gross exports in value-added terms that accommodate infinite repercussions of international and inter-sector transactions. This provides a better understanding of trade in value added in global value chains than does the conventional gross exports method, which is affected by double-counting problems. However, the new framework is based on monetary input--output (IO) tables and cannot distinguish prices from quantities; thus, it is unable to consider financial adjustments through the exchange market. In this paper, we propose a framework based on a physical IO system, characterized by its linear programming equivalent that can clarify the various complexities relevant to the existing indicators and is proved to be consistent with Koopman's results when the physical decompositions are evaluated in monetary terms. While international monetary tables are typically described in current U.S. dollars, the physical framework can elucidate the impact of price adjustments through the exchange market. An iterative procedure to calculate the exchange rates is proposed, and we also show that the physical framework is also convenient for considering indicators associated with greenhouse gas (GHG) emissions.
Resumo:
This paper contributes with a unified formulation that merges previ- ous analysis on the prediction of the performance ( value function ) of certain sequence of actions ( policy ) when an agent operates a Markov decision process with large state-space. When the states are represented by features and the value function is linearly approxi- mated, our analysis reveals a new relationship between two common cost functions used to obtain the optimal approximation. In addition, this analysis allows us to propose an efficient adaptive algorithm that provides an unbiased linear estimate. The performance of the pro- posed algorithm is illustrated by simulation, showing competitive results when compared with the state-of-the-art solutions.
Resumo:
The exponential increase of subjective, user-generated content since the birth of the Social Web, has led to the necessity of developing automatic text processing systems able to extract, process and present relevant knowledge. In this paper, we tackle the Opinion Retrieval, Mining and Summarization task, by proposing a unified framework, composed of three crucial components (information retrieval, opinion mining and text summarization) that allow the retrieval, classification and summarization of subjective information. An extensive analysis is conducted, where different configurations of the framework are suggested and analyzed, in order to determine which is the best one, and under which conditions. The evaluation carried out and the results obtained show the appropriateness of the individual components, as well as the framework as a whole. By achieving an improvement over 10% compared to the state-of-the-art approaches in the context of blogs, we can conclude that subjective text can be efficiently dealt with by means of our proposed framework.
Resumo:
We formulate and interpret several multi-modal registration methods in the context of a unified statistical and information theoretic framework. A unified interpretation clarifies the implicit assumptions of each method yielding a better understanding of their relative strengths and weaknesses. Additionally, we discuss a generative statistical model from which we derive a novel analysis tool, the "auto-information function", as a means of assessing and exploiting the common spatial dependencies inherent in multi-modal imagery. We analytically derive useful properties of the "auto-information" as well as verify them empirically on multi-modal imagery. Among the useful aspects of the "auto-information function" is that it can be computed from imaging modalities independently and it allows one to decompose the search space of registration problems.
Resumo:
The memory subsystem is a major contributor to the performance, power, and area of complex SoCs used in feature rich multimedia products. Hence, memory architecture of the embedded DSP is complex and usually custom designed with multiple banks of single-ported or dual ported on-chip scratch pad memory and multiple banks of off-chip memory. Building software for such large complex memories with many of the software components as individually optimized software IPs is a big challenge. In order to obtain good performance and a reduction in memory stalls, the data buffers of the application need to be placed carefully in different types of memory. In this paper we present a unified framework (MODLEX) that combines different data layout optimizations to address the complex DSP memory architectures. Our method models the data layout problem as multi-objective genetic algorithm (GA) with performance and power being the objectives and presents a set of solution points which is attractive from a platform design viewpoint. While most of the work in the literature assumes that performance and power are non-conflicting objectives, our work demonstrates that there is significant trade-off (up to 70%) that is possible between power and performance.
Resumo:
Thesis (Ph.D.)--University of Washington, 2015-12
Resumo:
It is generally challenging to determine end-to-end delays of applications for maximizing the aggregate system utility subject to timing constraints. Many practical approaches suggest the use of intermediate deadline of tasks in order to control and upper-bound their end-to-end delays. This paper proposes a unified framework for different time-sensitive, global optimization problems, and solves them in a distributed manner using Lagrangian duality. The framework uses global viewpoints to assign intermediate deadlines, taking resource contention among tasks into consideration. For soft real-time tasks, the proposed framework effectively addresses the deadline assignment problem while maximizing the aggregate quality of service. For hard real-time tasks, we show that existing heuristic solutions to the deadline assignment problem can be incorporated into the proposed framework, enriching their mathematical interpretation.