997 resultados para turbulence flow
Resumo:
Aerosol particles and water vapour are two important constituents of the atmosphere. Their interaction, i.e. thecondensation of water vapour on particles, brings about the formation of cloud, fog, and raindrops, causing the water cycle on the earth, and being responsible for climate changes. Understanding the roles of water vapour and aerosol particles in this interaction has become an essential part of understanding the atmosphere. In this work, the heterogeneous nucleation on pre-existing aerosol particles by the condensation of water vapour in theflow of a capillary nozzle was investigated. Theoretical and numerical modelling as well as experiments on thiscondensation process were included. Based on reasonable results from the theoretical and numerical modelling, an idea of designing a new nozzle condensation nucleus counter (Nozzle-CNC), that is to utilise the capillary nozzle to create an expanding water saturated air flow, was then put forward and various experiments were carried out with this Nozzle-CNC under different experimental conditions. Firstly, the air stream in the long capillary nozzle with inner diameter of 1.0~mm was modelled as a steady, compressible and heat-conducting turbulence flow by CFX-FLOW3D computational program. An adiabatic and isentropic cooling in the nozzle was found. A supersaturation in the nozzle can be created if the inlet flow is water saturated, and its value depends principally on flow velocity or flow rate through the nozzle. Secondly, a particle condensational growth model in air stream was developed. An extended Mason's diffusion growthequation with size correction for particles beyond the continuum regime and with the correction for a certain particle Reynolds number in an accelerating state was given. The modelling results show the rapid condensational growth of aerosol particles, especially for fine size particles, in the nozzle stream, which, on the one hand, may induce evident `over-sizing' and `over-numbering' effects in aerosol measurements as nozzle designs are widely employed for producing accelerating and focused aerosol beams in aerosol instruments like optical particle counter (OPC) and aerodynamical particle sizer (APS). It can, on the other hand, be applied in constructing the Nozzle-CNC. Thirdly, based on the optimisation of theoretical and numerical results, the new Nozzle-CNC was built. Under various experimental conditions such as flow rate, ambient temperature, and the fraction of aerosol in the total flow, experiments with this instrument were carried out. An interesting exponential relation between the saturation in the nozzle and the number concentration of atmospheric nuclei, including hygroscopic nuclei (HN), cloud condensation nuclei (CCN), and traditionally measured atmospheric condensation nuclei (CN), was found. This relation differs from the relation for the number concentration of CCN obtained by other researchers. The minimum detectable size of this Nozzle-CNC is 0.04?m. Although further improvements are still needed, this Nozzle-CNC, in comparison with other CNCs, has severaladvantages such as no condensation delay as particles larger than the critical size grow simultaneously, low diffusion losses of particles, little water condensation at the inner wall of the instrument, and adjustable saturation --- therefore the wide counting region, as well as no calibration compared to non-water condensation substances.
Resumo:
Street-level mean flow and turbulence govern the dispersion of gases away from their sources in urban areas. A suitable reference measurement in the driving flow above the urban canopy is needed to both understand and model complex street-level flow for pollutant dispersion or emergency response purposes. In vegetation canopies, a reference at mean canopy height is often used, but it is unclear whether this is suitable for urban canopies. This paper presents an evaluation of the quality of reference measurements at both roof-top (height = H) and at height z = 9H = 190 m, and their ability to explain mean and turbulent variations of street-level flow. Fast response wind data were measured at street canyon and reference sites during the six-week long DAPPLE project field campaign in spring 2004, in central London, UK, and an averaging time of 10 min was used to distinguish recirculation-type mean flow patterns from turbulence. Flow distortion at each reference site was assessed by considering turbulence intensity and streamline deflection. Then each reference was used as the dependent variable in the model of Dobre et al. (2005) which decomposes street-level flow into channelling and recirculating components. The high reference explained more of the variability of the mean flow. Coupling of turbulent kinetic energy was also stronger between street-level and the high reference flow rather than the roof-top. This coupling was weaker when overnight flow was stratified, and turbulence was suppressed at the high reference site. However, such events were rare (<1% of data) over the six-week long period. The potential usefulness of a centralised, high reference site in London was thus demonstrated with application to emergency response and air quality modelling.
Resumo:
Computational fluid dynamics was used to search for the links between the observed pattern of attack seen in a bauxite refinery's heat exchanger headers and the hydrodynamics inside the header. Validation of the computational fluid dynamics results was done by comparing then with flow parameters measured in a 1:5 scale model of the first pass header in the laboratory. Computational fluid dynamics simulations were used to establish hydrodynamic similarity between the 1:5 scale and full scale models of the first pass header. It was found that the erosion-corrosion damage seen at the tubesheet of the first pass header was a consequence of increased levels of turbulence at the tubesheet caused by a rapidly turning flow. A prismatic flow corrections device introduced in the past helped in rectifying the problem at the tubesheet but exaggerated the erosion-corrosion problem at the first pass header shell. A number of alternative flow correction devices were tested using computational fluid dynamics. Axial ribbing in the first pass header and an inlet flow diffuser have shown the best performance and were recommended for implementation. Computational fluid dynamics simulations have revealed a smooth orderly low turbulence flow pattern in the second, third and fourth pass as well as the exit headers where no erosion-corrosion was seen in practice. This study has confirmed that near-wall turbulence intensity, which can be successfully predicted by using computational fluid dynamics, is a good hydrodynamic predictor of erosion-corrosion damage in complex geometries. (c) 2006 Published by Elsevier Ltd.
Resumo:
Interactions between turbulent waters and atmosphere may lead to strong air-water mixing. This experimental study is focused on the flow down a staircase channel characterised by very strong flow aeration and turbulence. Interfacial aeration is characterised by strong air-water mixing extending down to the invert. The size of entrained bubbles and droplets extends over several orders of magnitude, and a significant number of bubble/droplet clusters was observed. Velocity and turbulence intensity measurements suggest high levels of turbulence across the entire air-water flow. The increase in turbulence levels, compared to single-phase flow situations, is proportional to the number of entrained particles. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Transitional flow past a three-dimensional circular cylinder is a widely studied phenomenon since this problem is of interest with respect to many technical applications. In the present work, the numerical simulation of flow past a circular cylinder, performed by using a commercial CFD code (ANSYS Fluent 12.1) with large eddy simulation (LES) and RANS (κ - ε and Shear-Stress Transport (SST) κ - ω! model) approaches. The turbulent flow for ReD = 1000 & 3900 is simulated to investigate the force coefficient, Strouhal number, flow separation angle, pressure distribution on cylinder and the complex three dimensional vortex shedding of the cylinder wake region. The numerical results extracted from these simulations have good agreement with the experimental data (Zdravkovich, 1997). Moreover, grid refinement and time-step influence have been examined. Numerical calculations of turbulent cross-flow in a staggered tube bundle continues to attract interest due to its importance in the engineering application as well as the fact that this complex flow represents a challenging problem for CFD. In the present work a time dependent simulation using κ – ε, κ - ω! and SST models are performed in two dimensional for a subcritical flow through a staggered tube bundle. The predicted turbulence statistics (mean and r.m.s velocities) have good agreement with the experimental data (S. Balabani, 1996). Turbulent quantities such as turbulent kinetic energy and dissipation rate are predicted using RANS models and compared with each other. The sensitivity of grid and time-step size have been analyzed. Model constants sensitivity study have been carried out by adopting κ – ε model. It has been observed that model constants are very sensitive to turbulence statistics and turbulent quantities.
Resumo:
Direct numerical simulations of turbulent flow over regular arrays of urban-like, cubical obstacles are reported. Results are analysed in terms of a formal spatial averaging procedure to enable interpretation of the flow within the arrays as a canopy flow, and of the flow above as a rough wall boundary layer. Spatial averages of the mean velocity, turbulent stresses and pressure drag are computed. The statistics compare very well with data from wind-tunnel experiments. Within the arrays the time-averaged flow structure gives rise to significant 'dispersive stress' whereas above the Reynolds stress dominates. The mean flow structure and turbulence statistics depend significantly on the layout of the cubes. Unsteady effects are important, especially in the lower canopy layer where turbulent fluctuations dominate over the mean flow.
Resumo:
Onondaga Lake has received the municipal effluent and industrial waste from the city of Syracuse for more than a century. Historically, 75 metric tons of mercury were discharged to the lake by chlor-alkali facilities. These legacy deposits of mercury now exist primarily in the lake sediments. Under anoxic conditions, methylmercury is produced in the sediments and can be released to the overlying water. Natural sedimentation processes are continuously burying the mercury deeper into the sediments. Eventually, the mercury will be buried to a depth where it no longer has an impact on the overlying water. In the interim, electron acceptor amendment systems can be installed to retard these chemical releases while the lake naturally recovers. Electron acceptor amendment systems are designed to meet the sediment oxygen demand in the sediment and maintain manageable hypolimnion oxygen concentrations. Historically, designs of these systems have been under designed resulting in failure. This stems from a mischaracterization of the sediment oxygen demand. Turbulence at the sediment water interface has been shown to impact sediment oxygen demand. The turbulence introduced by the electron amendment system can thus increase the sediment oxygen demand, resulting in system failure if turbulence is not factored into the design. Sediment cores were gathered and operated to steady state under several well characterized turbulence conditions. The relationship between sediment oxygen/nitrate demand and turbulence was then quantified and plotted. A maximum demand was exhibited at or above a fluid velocity of 2.0 mm•s-1. Below this velocity, demand decreased rapidly with fluid velocity as zero velocity was approached. Similar relationships were displayed by both oxygen and nitrate cores.
Resumo:
This study shows the air flow behavior through the geometry of a freight truck inside a AF6109 wind tunnel with the purpose to predict the speed, pressure and turbulence fields made by the air flow, to decrease the aerodynamic resistance, to calculate the dragging coefficient, to evaluate the aerodynamics of the geometry of the prototype using the CFD technique and to compare the results of the simulation with the results obtained experimentally with the “PETER 739 HAULER” scaled freight truck model located on the floor of the test chamber. The Geometry went through a numerical simulation process using the CFX 5,7. The obtained results showed the behavior of the air flow through the test chamber, and also it showed the variations of speed and pressure at the exit of the chamber and the calculations of the coefficient and the dragging force on the geometry of the freight truck. The evaluation of the aerodynamics showed that the aerodynamic deflector is a device that helped the reduction the dragging produced in a significant way by the air. Furthermore, the dragging coefficient and force on the prototype freight truck could be estimated establishing an incomplete similarity.
Resumo:
"TR63-217F."
Resumo:
Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. ^ Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. ^ Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably. ^
Resumo:
Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably.
Resumo:
NGC 1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by active galactic nucleus (AGN) jets observed in the radio as Perseus A. It presents a spectacular H alpha-emitting nebulosity surrounding NGC 1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and three-dimensional magnetohydrodynamical (MHD) simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions, is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the intracluster medium (ICM) with velocities of 100-500 km s(-1) are found, also resembling the observations. The isotropic outflow momentum of the turbulence slows the infall of the ICM, thus limiting further starburst activity in NGC 1275. As the turbulence is subsonic over most of the simulated volume, the turbulent kinetic energy is not efficiently converted into heat and additional heating is required to suppress the cooling flow at the core of the cluster. Simulations combining the MHD turbulence with the AGN outflow can reproduce the temperature radial profile observed around NGC 1275. While the AGN mechanism is the main heating source, the SNe are crucial to isotropize the energy distribution.
Resumo:
A general transition criterion is proposed in order to locate the core-annular flow pattern in horizontal and vertical oil-water flows. It is based on a rigorous one-dimensional two-fluid model of liquid-liquid two-phase flow and considers the existence of critical interfacial wave numbers related to a non-negligible interfacial tension term to which the linear stability theory still applies. The viscous laminar-laminar flow problem is fully resolved and turbulence effects on the stability are analyzed through experimentally obtained shape factors. The proposed general transition criterion includes in its formulation the inviscid Kelvin-Helmholtz`s discriminator. If a theoretical maximum wavelength is considered as a necessary condition for stability, a stability criterion in terms of the Eotvos number is achieved. Effects of interfacial tension, viscosity ratio, density difference, and shape factors on the stability of core-annular flow are analyzed in detail. The more complete modeling allowed for the analysis of the neutral-stability wave number and the results strongly suggest that the interfacial tension term plays an indispensable role in the correct prediction of the stable region of core-annular flow pattern. The incorporation of a theoretical minimum wavelength into the transition model produced significantly better results. The criterion predictions were compared with recent data from the literature and the agreement is encouraging. (C) 2007 American Institute of Chemical Engineers.
Resumo:
The aim of this study is to quantify the mass transfer velocity using turbulence parameters from simultaneous measurements of oxygen concentration fields and velocity fields. The surface divergence model was considered in more detail, using data obtained for the lower range of beta (surface divergence). It is shown that the existing models that use the divergence concept furnish good predictions for the transfer velocity also for low values of beta, in the range of this study. Additionally, traditional conceptual models, such as the film model, the penetration-renewal model, and the large eddy model, were tested using the simultaneous information of concentration and velocity fields. It is shown that the film and the surface divergence models predicted the mass transfer velocity for all the range of the equipment Reynolds number used here. The velocity measurements showed viscosity effects close to the surface, which indicates that the surface was contaminated with some surfactant. Considering the results, this contamination can be considered slight for the mass transfer predictions. (C) 2009 American Institute of Chemical Engineers AIChE J, 56: 2005-2017; 2010