976 resultados para trophoblast giant cell
Resumo:
Mammalian placentation is dependent upon the action of trophoblast cells at the time of implantation. Appropriate fetal growth, regulated by maternal nutrition and nutrient transport across the placenta, is a critical factor for adult offspring long-term health. We have demonstrated that a mouse maternal low-protein diet (LPD) fed exclusively during preimplantation development (Emb-LPD) increases offspring growth but programmes adult cardiovascular and metabolic disease. In this study, we investigate the impact of maternal nutrition on post-implantation trophoblast phenotype and fetal growth. Ectoplacental cone explants were isolated at day 8 of gestation from female mice fed either normal protein diet (NPD: 18% casein), LPD (9% casein) or Emb-LPD and cultured in vitro. We observed enhanced spreading and cell division within proliferative and secondary trophoblast giant cells (TGCs) emerging from explants isolated from LPD-fed females when compared with NPD and Emb-LPD explants after 24 and 48 h. Moreover, both LPD and Emb-LPD explants showed substantial expansion of TGC area during 24-48 h, not observed in NPD. No difference in invasive capacity was observed between treatments using Matrigel transwell migration assays. At day 17 of gestation, LPD- and Emb-LPD-fed conceptuses displayed smaller placentas and larger fetuses respectively, resulting in increased fetal:placental ratios in both groups compared with NPD conceptuses. Analysis of placental and yolk sac nutrient signalling within the mammalian target of rapamycin complex 1 pathway revealed similar levels of total and phosphorylated downstream targets across groups. These data demonstrate that early post-implantation embryos modify trophoblast phenotype to regulate fetal growth under conditions of poor maternal nutrition.
Resumo:
In the developing mouse embryo, the diploid trophectoderm is known to undergo a diploid to giant cell transformation. These cells arise by a process of endoreduplication, characterized by replication of the entire genome without subsequent mitosis or cell division, leading to polyploidy and the formation of giant nuclei. Studies of 13.5 day rat trophoblast derived from the parietal yolk sac have indicated a relatively low rate of DNA polymerase a activity, the noinnal eukaryotic replicase, in comparison to that of DNA polymerase g. These results have suggested that endoreduplication in trophoblast giant cells may not employ the normal replicase enzyme, DNA polymerase a. In order to determine whether a 'switch' from DNA polymerase to DNA polymerase is a necessary concomitant of the diploid to giant cell transformation, two distinct populations of trophoblast giant cells, the primary giant cell derived from the mural trophectoderm and the secondary giant cell derived from the polar trophoectoderm were used. These two populations of trophoblast giant cells can be obtained from the tissue outgrowths of 3.5da blastocysts and the extraembryonic ectoderm (EX) and ectoplacental cone (EPC) of 7.5 day embryos respectively. Tissue outgrowths were treated with aphidicolin, a specific reversible inhibitor of eukaryotic DNA polymerase a, on various days after explantation. The effect of aphidicolin treatment was assessed both qualitatively, using autoradiography and quantitatively by scintillation counting and Feulgen staining. 3 DNA synthesis was measured in control and treated cultures after a Hthymidine pulse. Scintillation counts of the embryo proper revealed that DNA synthesis was consistently inhibited by greater than 907. in the presence of aphidicolin. Inhibition of DNA synthesis in the EX and EPC varied between 81-957. and 82-987. respectively, indicating that most DNA synthesis was mediated by DNA polymerase a, but that a small but significant amount of residual synthesis was indicated. A qualitative approach was then applied to determine whether the apparent residual DNA synthesis was restricted to a subpopulation of giant cells or whether all giant cells displayed a low level of DNA synthesis. Autoradiographs of the ICM of blastocysts and the embryo proper of 7.5da embryos, which acted as diploid control population, was completely inhibited regardless of duration in explant culture. In contrast, primary trophoblast giant cells derived from blastocysts and secondary giant cells derived from the EX and EPC were observed to possess some heavily labelled cells after aphidicolin treatment. These results suggest that although DNA polymerase a is the primary replicating enzyme responsible for endoreduplication in mouse trophoblast giant cells, some nonactivity is also observed. A DNA polymerase assay employing tissue lysates of outgrown 7.5da embryo, EX and EPC tissues was used to attempt to confirm the presence of higher nonactivity in tissues possessing trophoblast giant cells. Employing a series of inhibitors of DNA polymerases, it would appear that DNA polymerase a is the major polymerase active in all tissues of the 7.5da mouse embryo. The nature of the putative residual DNA synthetic activity could not be unequivically determined in this study. Therefore, these results suggest that both primary and secondary trophoblast giant cells possess and use DNA polymerase a in endoreduplicative DNA synthesis. It would appear that the high levels of DNA polymerase g activity reported in trophoblast tissue derived from the 13.5 da rat yolk sac was not a general feature of all endoreduplication.
Resumo:
Neospora caninum is an aplicomplexan parasite that has brought several concerns to cattle raisers worldwide due to its relationship to fetal loss. However, the mechanism of the parasite's transplacental infection and induced abortions are not completely understood. Bovine trophoblastic binucleated cells (BNC) play a major role in the maternal-fetal interactions, migrating during the entire pregnancy from chorionic connections to uterine epithelium. This study aimed to investigate the possible role of BNC as phagocytic cells and its participation in the bovine transplacental infection of N. caninum. BNC was isolated by discontinuous Percoll gradient, and characterized by Hoeschst 33342 nucleus-specific staining. Isolated BNC were cultured in DMEM supplemented with 10% bovine fetal serum, and infected with 10(4) tachyzoites of N. caninum NC-1 strain. Parasite invasion was visualized by indirect immunofluorescence and Giemsa technique. Multiplication of parasites took place in 2-3 day cycles. Healthy cows' placenta and normal and infected cultured BNC was immunostained with monoclonal antibodies against CD-163, MAC-387 and NOS, demonstrating their phagocyte capacity. Thus, BNC was characterized as cells with macrophagic activity, which may host N. caninum in vitro. Therefore, we may conclude that BNC could potentially participate in the transplacental infection of bovine neosporosis.
Resumo:
Giant Cell Arteritis (GCA) is the most common vasculitis affecting the elderly. Archived formalin-fixed paraffin-embedded (FFPE) temporal artery biopsy (TAB) specimens potentially represent a valuable resource for large-scale genetic analysis of this disease. FFPE TAB samples were obtained from 12 patients with GCA. Extracted TAB DNA was assessed by real time PCR before restoration using the Illumina HD FFPE Restore Kit. Paired FFPE-blood samples were genotyped on the Illumina OmniExpress FFPE microarray. The FFPE samples that passed stringent quality control measures had a mean genotyping success of >97%. When compared with their matching peripheral blood DNA, the mean discordant heterozygote and homozygote single nucleotide polymorphisms calls were 0.0028 and 0.0003, respectively, which is within the accepted tolerance of reproducibility. This work demonstrates that it is possible to successfully obtain high-quality microarray-based genotypes FFPE TAB samples and that this data is similar to that obtained from peripheral blood.
Resumo:
Background: The purpose of this study is to describe the nature of cases undergoing temporal artery biopsy (TAB) for suspected giant cell arteritis (GCA). Methods: A retrospective review of case notes was undertaken for all patients on whom ophthalmologists had performed TAB in 2 teaching hospitals between 1995 and 2001. Presenting symptoms, referring specialty, TAB result, treatment, and discharge diagnosis were recorded. Results: Ophthalmologists performed TAB on 110 patients for suspected GCA. A variety of specialties referred patients to ophthalmology for TAB; presenting symptoms varied with referral source. Of the 110 TABs, 21 (19%) were reported as positive for GCA, 84 (76%) were negative, and 5 (4.5%) were reported as inadequate. The symptoms most commonly associated with a positive TAB were visual disturbance (15/21) and headache (15/21).The odds ratios for having a positive TAB result rather than a negative result were 1.0 for the presence of headache, 4.1 for visual disturbance, and 6.7 for jaw claudication. Interpretation: Physicians were faced with a different population of GCA suspects than ophthalmologists. While physicians should be alert to the significance of visual symptoms or jaw claudication, ophthalmologists should be ready to facilitate prompt TABs when appropriate. TAB should be performed promptly and an adequate length of artery taken for biopsy. An argument can be made that TAB is not needed in cases of suspected GCA. However, a positive result provides firm justification for the use of steroids. We feel that TAB has a useful role and we make reference to methods to maximize its usefulness.
Resumo:
Driver mutations in the two histone 3.3 (H3.3) genes, H3F3A and H3F3B, were recently identified by whole genome sequencing in 95% of chondroblastoma (CB) and by targeted gene sequencing in 92% of giant cell tumour of bone (GCT). Given the high prevalence of these driver mutations, it may be possible to utilise these alterations as diagnostic adjuncts in clinical practice. Here, we explored the spectrum of H3.3 mutations in a wide range and large number of bone tumours (n 5 412) to determine if these alterations could be used to distinguish GCT from other osteoclast-rich tumours such as aneurysmal bone cyst, nonossifying fibroma, giant cell granuloma, and osteoclast-rich malignant bone tumours and others. In addition, we explored the driver landscape of GCT through whole genome, exome and targeted sequencing (14 gene panel). We found that H3.3 mutations, namely mutations of glycine 34 in H3F3A, occur in 96% of GCT. We did not find additional driver mutations in GCT, including mutations in IDH1, IDH2, USP6, TP53. The genomes of GCT exhibited few somatic mutations, akin to the picture seen in CB. Overall our observations suggest that the presence of H3F3A p.Gly34 mutations does not entirely exclude malignancy in osteoclast-rich tumours. However, H3F3A p.Gly34 mutations appear to be an almost essential feature of GCT that will aid pathological evaluation of bone tumours, especially when confronted with small needle core biopsies. In the absence of H3F3A p.Gly34 mutations, a diagnosis of GCT should be made with caution.
Resumo:
It is recognized that some mutated cancer genes contribute to the development of many cancer types, whereas others are cancer type specific. For genes that are mutated in multiple cancer classes, mutations are usually similar in the different affected cancer types. Here, however, we report exquisite tumor type specificity for different histone H3.3 driver alterations. In 73 of 77 cases of chondroblastoma (95%), we found p.Lys36Met alterations predominantly encoded in H3F3B, which is one of two genes for histone H3.3. In contrast, in 92% (49/53) of giant cell tumors of bone, we found histone H3.3 alterations exclusively in H3F3A, leading to p.Gly34Trp or, in one case, p.Gly34Leu alterations. The mutations were restricted to the stromal cell population and were not detected in osteoclasts or their precursors. In the context of previously reported H3F3A mutations encoding p.Lys27Met and p.Gly34Arg or p.Gly34Val alterations in childhood brain tumors, a remarkable picture of tumor type specificity for histone H3.3 driver alterations emerges, indicating that histone H3.3 residues, mutations and genes have distinct functions.
Resumo:
Giant cell arteritis (GCA) is a systemic large vessel vasculitis, with extracranial arterial involvement described in 10-15% of cases, usually affecting the aorta and its branches. Patients with GCA are more likely to develop aortic aneurysms, but these are rarely present at the time of the diagnosis. We report the case of an 80-year-old Caucasian woman, who reported proximal muscle pain in the arms with morning stiffness of the shoulders for eight months. In the previous two months, she had developed worsening bilateral arm claudication, severe pain, cold extremities and digital necrosis. She had no palpable radial pulses and no measurable blood pressure. The patient had normochromic anemia, erythrocyte sedimentation rate of 120 mm/h, and a negative infectious and autoimmune workup. Computed tomography angiography revealed concentric wall thickening of the aorta extending to the aortic arch branches, particularly the subclavian and axillary arteries, which were severely stenotic, with areas of bilateral occlusion and an aneurysm of the ascending aorta (47 mm). Despite corticosteroid therapy there was progression to acute critical ischemia. She accordingly underwent surgical revascularization using a bilateral carotid-humeral bypass. After surgery, corticosteroid therapy was maintained and at six-month follow-up she was clinically stable with reduced inflammatory markers. GCA, usually a chronic benign vasculitis, presented exceptionally in this case as acute critical upper limb ischemia, resulting from a massive inflammatory process of the subclavian and axillary arteries, treated with salvage surgical revascularization.
Resumo:
The mostly binucleate trophoblast giant cells (TGC) found in bovine placentomes, in addition to synthesizing and releasing hormones play an important role in fetal development and maternal adaptation to pregnancy. Placentomes from early gestation were collected, and for isolation of mature TGC, three cellular disaggregation methods, mechanical (MECH), enzymatic by trypsin (TRYP) or collagenase (COLL) were compared to each other. Further on, the cell survival in culture medium (DMEM) supplemented with either 10% fetal calf serum (FCS) or 10% serum replacement (SR) on culture plates free of any substrate was evaluated over a period of 90 days by trypan blue exclusion. The cells were further characterized by HOECHST 33342 nuclear staining, and immunocytochemical staining with monoclonal antibodies against vimentim and cytokeratin. A mean total rate of TGC survival of 82.56% was recorded. Statistical analysis showed significantly higher survival rates after enzymatic disaggregation with COLL (86.23%) than following MECH (80.38%) or TRYP (80.91%) treatment. Supplementation of DMEM with FCS resulted in significantly higher cellular survival rates (87.13%) when compared to the addition of SR (77.73%). Analysis of the influence of both, disaggregation method and medium supplementation on TGC survival revealed statistically significant differences between the following groups: MECH-SR (71.09%) was significantly lower than all other groups; TRYP-SR (78.03%) was significantly different from all other groups; TRYP-FCS (83.43%) and COLL-SR (84.08%) were significantly lower than MECH-FCS (89.98%) which together with COLL-FCS (88.25%) showed the highest cellular survival rate. In summary, our results show that TGC isolated from early gestation placentomes may be viable for more than 90 days of culture. However, whether these TGC produce placental lactogen throughout this period has yet to be determined. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)