20 resultados para trifluoperazine
Okadaic acid and trifluoperazine enhance Agrobacterium-mediated transformation in eastern white pine
Resumo:
In this study, we show that safranine at the concentrations usually employed as a probe of mitochondrial membrane potential significantly protects against the oxidative damage of mitochondria induced by Fe(II)citrate. The effect of safranine was illustrated by experiments showing that this dye strongly inhibits both production of thiobarbituric acid-reactive substances and membrane potential decrease when energized mitochondria were exposed to Fe(II)citrate in the presence of Ca 2+ ions. Similar results were obtained with the lipophylic compound trifluoperazine. It is proposed that, like trifluoperazine, safranine decreases the rate of lipid peroxidation due to its insertion in the membrane altering the physical state of the lipid phase.
Resumo:
Trifluoperazine (TFP) (35 μM) prevents mitochondrial transmembrane potential (ΔΨ) collapse and swelling induced by 10 μM Ca2+ plus oxyradicals generated from δ-aminolevulinic acid autoxidation. In contrast with EGTA, TFP cannot restore the totally collapsed ΔΨ. So, TFP might not remove Ca2+ from its 'harmful site', but could impair the ROS-driven cross-linking between membrane -SH proteins. Our data are correlated with the protective uses of TFP against oxidative processes promoted by oxyradicals plus Ca2+.
Resumo:
Highly purified sheep lung cyclic-3',5'-nucleotide phosphodiesterase was sensitive to Ca2+/EGTA but insensitive to exogenous calmodulin. The Ca2+-sensitivity was inhibited by trifluoperazine. Heat-treated enzyme could activate a calmodulin-deficient phosphodiesterase, suggesting the presence of endogenous calmodulin in sheep lung cyclic-3',5'-nucleotide phosphodiesterase, possibly associated with the enzyme in a Ca2+-independent manner.
Resumo:
花粉管是种子植物受精过程中雄性生殖单位的载体,具有典型的极性顶端生长模式,因此成为研究细胞极性生长机理的理想模式体系。本研究以裸子植物白杄(Picea meyeri Rehd.et Wils)花粉为材料,并以对花粉萌发和花粉管生长起关键作用的Ca2+作为切入点,分析钙-钙调素在花粉萌发及花粉管极性生长中的作用,同时也为进一步探讨它们在其他植物细胞中的作用机理研究提供重要参考。 通过细胞化学定位证明,白杄花粉中含有丰富的游离钙离子和钙调素,在花粉管顶端呈现明显的梯度分布;钙调素特异拮抗剂三氟拉嗪(trifluoperazine,简称TFP)可以在钙离子存在的情况下与钙调素特异性结合,从而抑制钙-钙调素复合物对下游效应蛋白的激活。微摩尔浓度的TFP明显抑制白杄花粉萌发以及花粉管的生长,并导致大部分花粉管畸形生长。TFP处理后的花粉管(约80%以上)中游离钙离子梯度消失或梯度不明显,由此说明钙调素参与花粉管顶端游离钙离子梯度的维持。抑制剂处理显著影响钙调素在花粉管顶端的梯度分布模式,梯度落差明显减小。 应用鬼笔环肽标记花粉管微丝骨架表明,正常生长的花粉管中微丝骨架沿花粉管长轴平行的方向呈网络状分布,但是在花粉管顶端仅有杂乱的微丝片断分布;低浓度TFP处理之后,微丝骨架分布的方向性丧失并开始卷曲,花粉管顶端的微丝片断消失,高浓度TFP处理之后微丝骨架完全断裂,聚集成短粗的束状。FM4-64标记花粉管后发现,经TFP处理的花粉管顶端胞吞速度明显加快,最终染料集中分布在紧贴质膜下很小的区域内,同时胞吞过程加快主要表现在染料进入花粉管细胞的速度加快,而随后染料在细胞内的扩散速度并无明显变化。以酸性磷酸酶为标志的胞吐活性也显著下降。通过MitoTracker染色发现,TFP处理之后花粉管中线粒体的形态和分布都发生了显著变化;在电子显微镜下观察显示,抑制剂处理的花粉管中液泡化现象严重,线粒体膨大变形,其内嵴的结构遭到严重破坏,同时高尔基体和内质网的形态也都发生了不同程度的异常变化,另外线粒体和液泡还出现了类似于自体吞噬的现象。 在荧光显微镜下观察发现,在标准培养基中培养的花粉管经苯胺兰染色后,胼胝质分布于整根花粉管侧壁上,而顶端区域胼胝质分布却很少或不存在。但经TFP处理之后,在花粉管细胞壁的个别区域有胼胝质大量沉积,同时在花粉管中还出现能被苯胺兰特异染色的许多颗粒状物质。此时花粉管顶端细胞壁中的纤维素含量明显减少。以单克隆抗体JIM5、JIM7标记果胶质,在激光扫描共聚焦显微镜下观察发现,标准培养基中培养的花粉管,酸性果胶质分布于整根花粉管的侧壁中,但在其顶端的含量很低或不存在,与此相反,酯化果胶质只分布在花粉管的顶端;而经TFP处理的花粉管中,酸性果胶质均匀分布于花粉管细胞壁上,酯化果胶质仅出现在花粉管基部的细胞壁中。单克隆抗体LM2和LM6标记结果显示,正常生长的花粉管细胞壁中AGPs呈周期性的环状分布,TFP处理后AGPs仅仅分布在花粉管基部的细胞壁中。SDS-PAGE电泳分析显示,抑制剂处理之后花粉管细胞壁蛋白的表达也发生明显变化。由FT-IR分析进一步证实了上述两种果胶质及纤维素在花粉管顶端细胞壁中相对含量的变化趋势。 利用双向电泳技术分离花粉管全蛋白,结果发现正常生长和TFP处理后的花粉管的大部分蛋白斑点都处于pI 4-8以及分子量在14-97 KD的范围内,主要是一些中等分子量大小、微酸性和中性的蛋白类群。由软件分析显示,除其中76个蛋白外,大部分蛋白质的表达并未发生变化。将上述76个表达量发生变化的差异蛋白进行胶内酶解,并经ESI-MS/MS分析鉴定,以及质谱数据库搜索,最终鉴定出57个蛋白,其中23个表达量上调,其余34个表达量下调。根据其生物学功能可以分为碳水化合物及能量代谢、胁迫及防御反应、细胞扩展、信号转导等功能蛋白类群。经TFP处理后,花粉管中碳水化合物及能量代谢过程整体水平下降,氧化磷酸化水平减低,但是丙酮酸脱羧酶旁路代谢水平却略有上升。由此暗示,花粉管在生长停滞的环境条件下,该途径可作为能量供应的替代机制;参与转一碳单位反应的蛋白表达量普遍上调,参与细胞延展(如细胞骨架重构、细胞壁多糖合成)的蛋白表达量下调,此项研究结果与上述的细胞生物学分析结论基本一致。 综上所述,当钙调素蛋白功能受到抑制后,顶端游离钙离子浓度梯度消失同时胞质钙离子浓度显著升高;细胞代谢水平(糖酵解和三羧酸酸循环)整体下降,而可能通过丙酮酸脱羧酶旁路来维持最低限度的能量供应;同时花粉管微丝骨架发生解聚,花粉管细胞壁组成成分合成水平下降,细胞延展相关的能力减弱,最终导致花粉管生长的停滞。钙-钙调素信号存在于白杄花粉萌发和花粉管生长这一特定的细胞生物学事件中,并参与花粉管顶端游离钙离子梯度的维持和定向生长。
Resumo:
Four phenothiazines, promethazine, dioxypromethazine, chlorpromazine, and trifluoperazine have been separated by capillary electrophoresis using N, N, -dimethylformamide (DMF) as separation medium with UV absorbance detection. High voltage and concentrated buffer were used with small current and low electroosmosis. Good resolution and high column efficiency were obtained. Separation selectivity in DMI; was different from that in water because of the different solvation interactions. The influence of buffer composition on separation selectivities and electroosmosis were also studied.
Resumo:
分别研究了钙离子和三价稀土离子对白眉蝮蛇 (Agkistrodon blomhoffii Ussurensis)蛇毒磷脂酶 A2(PLA2 )活性的影响以及钙调蛋白对它的激活作用 .实验结果表明 ,PLA2 的活性对钙离子表现出依赖性 ,钙调蛋白能够激活该蛇毒 PLA2 ,钙调蛋白的拮抗剂三氟甲基吩噻嗪 (Trifluoperazine)能够完全抑制它对 PLA2的激活作用 .三价稀土离子 La3+、Eu3+、Dy3+、Yb3+对该 PLA2 的活性表现出抑制作用 ,其中离子半径较大的La3+和 Eu3+对酶活的抑制程度要小于半径较小的 Dy3+和 Yb3+.
Resumo:
Separations of phenothiazines, promethazine(PZ), dioxypromethazine (OZ), chlorpromazine(CZ), trifluoperazine(TfZ) and thioridazine(TZ) by capillary electrophoresis in water and FA media were carried out and compared. Thus different selectivity and resolution were observed as media varying from water to FA. Migration order was PZ, OZ, CZ and TZ in water but (TZ+PZ), CZ and OZ in FA, when the same buffer, 25 mmol/L Tris and 25 mmol/L citric acid, was used. It also has been observed that pH has great effect on selectivity both in water and FA and a possible explanation was given. Separation efficiency was higher in FA media than in water because of the permission of high voltage applied. For all separations in FA 30 kV was applied, and when 25 mmol/L Tris was used as buffer, current was only 20 mu A and complete separation of TZ, CZ, PZ and OZ was achieved with effencicy higher than 3.5 x 10(5) theoretical plates for all analytes. The high performance of capillary electrophoresis in FA suggests that FA is an excellent media separation.
Resumo:
We developed a high-throughput yeast-based assay to screen for chemical inhibitors of Ca(2+)/calmodulin-dependent kinase pathways. After screening two small libraries, we identified the novel antagonist 125-C9, a substituted ethyleneamine. In vitro kinase assays confirmed that 125-C9 inhibited several calmodulin-dependent kinases (CaMKs) competitively with Ca(2+)/calmodulin (Ca(2+)/CaM). This suggested that 125-C9 acted as an antagonist for Ca(2+)/CaM rather than for CaMKs. We confirmed this hypothesis by showing that 125-C9 binds directly to Ca(2+)/CaM using isothermal titration calorimetry. We further characterized binding of 125-C9 to Ca(2+)/CaM and compared its properties with those of two well-studied CaM antagonists: trifluoperazine (TFP) and W-13. Isothermal titration calorimetry revealed that binding of 125-C9 to CaM is absolutely Ca(2+)-dependent, likely occurs with a stoichiometry of five 125-C9 molecules to one CaM molecule, and involves an exchange of two protons at pH 7.0. Binding of 125-C9 is driven overall by entropy and appears to be competitive with TFP and W-13, which is consistent with occupation of similar binding sites. To test the effects of 125-C9 in living cells, we evaluated mitogen-stimulated re-entry of quiescent cells into proliferation and found similar, although slightly better, levels of inhibition by 125-C9 than by TFP and W-13. Our results not only define a novel Ca(2+)/CaM inhibitor but also reveal that chemically unique CaM antagonists can bind CaM by distinct mechanisms but similarly inhibit cellular actions of CaM.
Resumo:
An 18.2 kDa protein from the liver fluke, Fasciola hepatica has been identified and characterised. The protein shows strongest sequence similarity to egg antigen proteins from Schistosoma mansoni, Schistosoma japonicum and Clonorchis sinensis. The protein is predicted to adopt a calmodulin-like fold; it thus represents the third calmodulin-like protein to be characterised in F. hepatica and has been named FhCaM3. Compared to the classical calmodulin structure there are some variations. Most noticeably, the central, linker helix is disrupted by a cysteine residue. Alkaline native gel electrophoresis showed that FhCaM3 binds calcium ions. This binding event increases the ability of the protein to bind the hydrophobic fluorescent probe 8-anilinonaphthalene-1-sulphonate, consistent with an increase in surface hydrophobicity as seen in other calmodulins. FhCaM3 binds to the calmodulin antagonists trifluoperazine and W7, but not to the myosin regulatory light chain binding compound praziquantel. Immunolocalisation demonstrated that the protein is found in eggs and vitelline cells. Given the critical role of calcium ions in egg formation and hatching this suggests that FhCaM3 may play a role in calcium signalling in these processes. Consequently the antagonism of FhCaM3 may, potentially, offer a method for inhibiting egg production and thus reducing the spread of infection.
Resumo:
In trematodes, there is a family of proteins which combine EF-hand-containing domains with dynein light chain (DLC)-like domains. A member of this family from the liver fluke, Fasciola hepatica-FhCaBP4-has been identified and characterised biochemically. FhCaBP4 has an N-terminal domain containing two imperfect EF-hand sequences and a C-terminal dynein light chain-like domain. Molecular modelling predicted that the two domains are joined by a flexible linker. Native gel electrophoresis demonstrated that FhCaBP4 binds to calcium, manganese, barium and strontium ions, but not to magnesium or zinc ions. The hydrophobic, fluorescent probe 8-anilinonaphthalene-1-sulphonate bound more tightly to FhCaBP4 in the presence of calcium ions. This suggests that the protein undergoes a conformational change on ion binding which increases the number of non-polar residues on the surface. FhCaBP4 was protected from limited proteolysis by the calmodulin antagonist W7, but not by trifluoperazine or praziquantel. Protein-protein cross-linking experiments showed that FhCaBP4 underwent calcium ion-dependent dimerisation. Since DLCs are commonly dimeric, it is likely that FhCaBP4 dimerises through this domain. The molecular model reveals that the calcium ion-binding site is located close to a key sequence in the DLC-like domain, suggesting a plausible mechanism for calcium-dependent dimerisation.
Resumo:
A DNA sequence encoding a protein with predicted EF-hand and dynein light chain binding domains was identified in a Fasciola hepatica EST library. Sequence analysis of the encoded protein revealed that the most similar known protein was the Fasciola gigantica protein FgCaBP3 and so this newly identified protein was named FhCaBP3. Molecular modelling of FhCaBP3 predicted a highly flexible N-terminal region, followed by a domain containing two EF-hand motifs the second of which is likely to be a functioning divalent ion binding site. The C-terminal domain of the protein contains a dynein light chain like region. Interestingly, molecular modelling predicts that calcium ion binding to the N-terminal domain destabilises the ß-sheet structure of the C-terminal domain. FhCaBP3 can be expressed in, and purified from, Escherichia coli. The recombinant protein dimerises and the absence of calcium ions appeared to promote dimerisation. Native gel shift assays demonstrated that the protein bound to calcium and manganese ions, but not to magnesium, barium, zinc, strontium, nickel, copper or cadmium ions. FhCaBP3 interacted with the calmodulin antagonists trifluoperazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine as well as the myosin regulatory light chain-binding drug praziquantel. Despite sequence and structural similarities to other members of the same protein family from F. hepatica, FhCaBP3 has different biochemical properties to the other well characterised family members, FH22 and FhCaBP4. This suggests that each member of this trematode calcium-binding family has discrete functional roles within the organism.
Resumo:
The tegumental allergen-like (TAL) proteins from Schistosoma mansoni are part of a family of calcium binding proteins found only in parasitic flatworms. These proteins have attracted interest as potential drug or vaccine targets, yet comparatively little is known about their biochemistry. Here, we compared the biochemical properties of three members of this family: SmTAL1 (Sm22.6), SmTAL2 (Sm21.7) and SmTAL3 (Sm20.8). Molecular modelling suggested that, despite similarities in domain organisation, there are differences in the three proteins’ structures. SmTAL1 was predicted to have two functional calcium binding sites and SmTAL2 was predicted to have one. Despite the presence of two EF-hand-like structures in SmTAL3, neither was predicted to be functional. These predictions were confirmed by native gel electrophoresis, intrinsic fluorescence and differential scanning fluorimetry: both SmTAL1 and SmTAL2 are able to bind calcium ions reversibly, but SmTAL3 is not. SmTAL1 is also able to interact with manganese, strontium, iron(II) and nickel ions. SmTAL2 has a different ion binding profile interacting with cadmium, manganese, magnesium, strontium and barium ions in addition to calcium. All three proteins form dimers and, in contrast to some Fasciola hepatica proteins from the same family; dimerization is not affected by calcium ions. SmTAL1 interacts with the anti-schistosomal drug praziquantel and the calmodulin antagonists trifluoperazine, chlorpromazine and W7. SmTAL2 interacts only with W7. SmTAL3 interacts with the aforementioned calmodulin antagonists and thiamylal, but not praziquantel. Overall, these data suggest that the proteins have different biochemical properties and thus, most likely, different in vivo functions.
Resumo:
Background: Deficiencies in effective flukicide options and growing issues with drug resistance make current strategies for liver fluke control unsustainable, thereby promoting the need to identify and validate new control targets in Fasciola spp. parasites. Calmodulins (CaMs) are small calcium-sensing proteins with ubiquitous expression in all eukaryotic organisms and generally use fluctuations in intracellular calcium levels to modulate cell signalling events. CaMs are essential for fundamental processes including the phosphorylation of protein kinases, gene transcription, calcium transport and smooth muscle contraction. In the blood fluke Schistosoma mansoni, calmodulins have been implicated in egg hatching, miracidial transformation and larval development. Previously, CaMs have been identified amongst liver fluke excretory-secretory products and three CaM-like proteins have been characterised biochemically from adult Fasciola hepatica, although their functions remain unknown.
Methods: In this study, we set out to investigate the biological function and control target potential of F. hepatica CaMs (FhCaMs) using RNAi methodology alongside novel in vitro bioassays.
Results: Our results reveal that: (i) FhCaMs are widely expressed in parenchymal cells throughout the forebody region of juvenile fluke; (ii) significant transcriptional knockdown of FhCaM1-3 was inducible by exposure to either long (~200 nt) double stranded (ds) RNAs or 27 nt short interfering (si) RNAs, although siRNAs were less effective than long dsRNAs; (iii) transient long dsRNA exposure-induced RNA interference (RNAi) of FhCaMs triggered transcript knockdown that persisted for ≥ 21 days, and led to detectable suppression of FhCaM proteins; (iv) FhCaM RNAi significantly reduced the growth of juvenile flukes maintained in vitro; (v) FhCaM RNAi juveniles also displayed hyperactivity encompassing significantly increased migration; (vi) both the reduced growth and increased motility phenotypes were recapitulated in juvenile fluke using the CaM inhibitor trifluoperazine hydrochloride, supporting phenotype specificity.
Conclusions: These data indicate that the Ca(2+)-modulating functions of FhCaMs are important for juvenile fluke growth and movement and provide the first functional genomics-based example of a growth-defect resulting from gene silencing in liver fluke. Whilst the phenotypic impacts of FhCaM silencing on fluke behaviour do not strongly support their candidature as new flukicide targets, the growth impacts encourage further consideration, especially in light of the speed of juvenile fluke growth in vivo.
Resumo:
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.