998 resultados para transmission spectrum


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A system comprised of a Martin-Puplett type polarizing interferometer and a Helium-3 cryostat was developed to study the transmission of materials in the very-far-infrared region of the spectrum. This region is of significant interest due to the low-energy excitations which many materials exhibit. The experimental transmission spectrum contains information concerning the optical properties of the material. The set-up of this system is described in detail along with the adaptations and improvements which have been made to the system to ensure the best results. Transmission experiments carried out with this new set-up for two different varieties of materials: superconducting thin films of lead and biological proteins, are discussed. Several thin films of lead deposited on fused silica quartz substrates were studied. From the ratio of the transmission in the superconducting state to that in the normal state the superconducting energy gap was determined to be approximately 25 cm-1 which corresponds to 2~/kBTc rv 5 in agreement with literature data. Furthermore, in agreement with theoretical predictions, the maximum in the transmission ratio was observed to increase as the film thickness was increased. These results provide verification of the system's ability to accurately measure the optical properties of thin low-Tc superconducting films. Transmission measurements were carried out on double deionized water, and a variety of different concentrations by weight of the globular protein, Bovine Serum Albumin, in the sol, gel and crystalline forms. The results of the water study agree well with literature values and thus further illustrate the reproducibility of the system. The results of the protein experiments, although preliminary, indicate that as the concentration increases the samples become more transparent. Some weak structure in the frequency dependent absorption coefficient, which is more prominent in crystalline samples, may be due to low frequency vibrations of the protein molecules.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The potential of clear Ga2S3-GeS2-CsCl based sulfide glasses transparent up to 11.5 μm to be used as new optical material for multispectral applications has been investigated. The addition of large amount of chlorine ions – above 40 mol.% of CsCl – into the chalcogenide vitreous network in order to produce colorless glasses results in a drastic increase of their water contamination. We report for the first time, to the best of our knowledge, the purification of cesium chloride CsCl by dynamic distillations under vacuum in order to reduce water and hydroxyl group contamination before complete melting of the glass. Besides, sulfur purification by dynamic and static distillations was also performed in the implemented method. The obtained glasses were then characterized by UV-visible and infrared (FTIR) spectroscopies, by electron probe microanalysis (EPMA), thermal analysis (DSC), and their refractive indices in the visible and near infrared ranges were also measured. A large improvement of the glass transmission spectrum has been achieved with an estimated reduction of about 45 times of the OH and H2O content and 60 times of the SH content. The glass thermal molding ability and chemical durability with and without protective coating have been tested to probe their potential for fabrication of complex optics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present high resolution transmission spectra of giant planet atmospheres from a coupled 3-D atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9 to 55 day orbital periods around solar-type stars. The results of our 3-D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple 1-D models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blue shifts of up to 3 km s−1, whereas less irradiated planets show almost no net Doppler shifts. Compared to 1-D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3-D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1-D atmospheric models may be inadequate, as 3-D atmospheric motions can produce a noticeable effect on the absorption signatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the Very Large Telescope (VLT) FOcal Reducer and Spectrograph (FORS2) across the wavelength range 411-810nm. The transit depth is measured with a typical precision of 240 parts per million (ppm) in wavelength bins of 10nm on a V = 12.1 magnitude star. We detect the sodium absorption feature (3.2-sigma) and find evidence for potassium. The ground-based transmission spectrum is consistent with Hubble Space Telescope (HST) optical spectroscopy, strengthening the interpretation of WASP-39b having a largely clear atmosphere. Our results demonstrate the great potential of the recently upgraded FORS2 spectrograph for optical transmission spectroscopy, obtaining HST-quality light curves from the ground.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have employed time-dependent local-spin-density theory to analyze the far-infrared transmission spectrum of InAs self-assembled nanoscopic rings recently reported [A. Lorke et al., Phys. Rev. Lett. (to be published)]. The overall agreement between theory and experiment is fairly good, which on the one hand confirms that the experimental peaks indeed reflect the ringlike structure of the sample, and on the other hand, asseses the suitability of the theoretical method to describe such nanostructures. The addition energies of one- and two-electron rings are also reported and compared with the corresponding capacitance spectra

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les expériences de spectroscopie ont été réalisées en collaboration avec Jean-François Allard du groupe de Denis Morris de l'Université de Sherbrooke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have employed time-dependent local-spin-density theory to analyze the far-infrared transmission spectrum of InAs self-assembled nanoscopic rings recently reported [A. Lorke et al., Phys. Rev. Lett. (to be published)]. The overall agreement between theory and experiment is fairly good, which on the one hand confirms that the experimental peaks indeed reflect the ringlike structure of the sample, and on the other hand, asseses the suitability of the theoretical method to describe such nanostructures. The addition energies of one- and two-electron rings are also reported and compared with the corresponding capacitance spectra

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modelling the interaction of terahertz(THz) radiation with biological tissueposes many interesting problems. THzradiation is neither obviously described byan electric field distribution or anensemble of photons and biological tissueis an inhomogeneous medium with anelectronic permittivity that is bothspatially and frequency dependent making ita complex system to model.A three-layer system of parallel-sidedslabs has been used as the system throughwhich the passage of THz radiation has beensimulated. Two modelling approaches havebeen developed a thin film matrix model anda Monte Carlo model. The source data foreach of these methods, taken at the sametime as the data recorded to experimentallyverify them, was a THz spectrum that hadpassed though air only.Experimental verification of these twomodels was carried out using athree-layered in vitro phantom. Simulatedtransmission spectrum data was compared toexperimental transmission spectrum datafirst to determine and then to compare theaccuracy of the two methods. Goodagreement was found, with typical resultshaving a correlation coefficient of 0.90for the thin film matrix model and 0.78 forthe Monte Carlo model over the full THzspectrum. Further work is underway toimprove the models above 1 THz.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Preliminary tests indicated 20-degrees-25-degrees-C as optimum temperature range to the germination of the seeds of P. gonoacantha. Seeds germinate both under light and dark conditions, although final percentage is always higher in latest condition. The transmission spectrum of the tegument was investigated and showed an enrichment of the light in far-red region which reaches the embryo. Consequently the white light inhibits partially germination. Another factor controlling germination was the water availability. Our results indicated that the excessive water available during imbibition inhibits the germination process. According to our results we propose that this species do not have a pioneer behavior and even though P. gonoacantha had been described as a riparian vegetation species, the germination process is strongly inhibited with excessive water during imbiibition process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We address the bandgap effect and the thermo-optical response of high-index liquid crystal (LC) infiltrated in photonic crystal fibers (PCF) and in hybrid photonic crystal fibers (HPCF). The PCF and HPCF consist of solid-core microstructured optical fibers with hexagonal lattice of air-holes or holes filled with LC. The HPCF is built from the PCF design by changing its cladding microstructure only in a horizontal central line by including large holes filled with high-index material. The HPCF supports propagating optical modes by two physical effects: the modified total internal reflection (mTIR) and the photonic bandgap (PBG). Nevertheless conventional PCF propagates light by the mTIR effect if holes are filled with low refractive index material or by the bandgap effect if the microstructure of holes is filled with high refractive-index material. The presence of a line of holes with high-index LC determines that low-loss optical propagation only occurs on the bandgap condition. The considered nematic liquid crystal E7 is an anisotropic uniaxial media with large thermo-optic coefficient; consequently temperature changes cause remarkable shifts in the transmission spectrums allowing thermal tunability of the bandgaps. Photonic bandgap guidance and thermally induced changes in the transmission spectrum were numerically investigated by using a computational program based on the beam propagation method. © 2010 SPIE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho, cristais de sulfato níquel dopados com íons de manganês (NSH: Mn) e cristais de sulfato níquel dopados com de íon de magnésio (NMgSH) foram crescidos e posteriormente caracterizados pelas técnicas de difração de raios X e de espectroscopia Raman. Os resultados obtidos mostraram que os cristais dopados possuem estrutura muito semelhante a do cristal de sulfato de níquel puro (NSH), com uma deformação anisotrópica nas dimensões da célula unitária em relação ao cristal puro. O objetivo do presente estudo foi crescer dois novos monocristais de boa qualidade óptica para serem usados como filtros ópticos de banda passante. Os cristais de sulfato de níquel hexa-hidratado (NHS) são conhecidos por possuírem espectros de transmissão óptica, que tem atraído muita atenção, pois apresentam duas regiões com alta eficiência de transmissão, aproximadamente 80%, sendo a primeira região entre 200 e 350 nm e a segunda entre 400 e 600 nm, e uma alta eficiência de absorção em outras regiões do espectro UV-VIS. Um espectro de transmissão de luz com estas características é semelhante a um filtro óptico. Analises Termogravimetric (TGA) foram realizadas para cristais puros e dopados. A temperatura de decomposição obtida para o NSH foi de 73 ° C, enquanto que os cristais de NSH:Mn e NMgSH apresentam valores de 82 ° C e 86 º C, respectivamente. Como pode ser facilmente percebido, a estabilidade térmica de cristais com o íons de Mn ou Mg em suas estruturas é significativamente maior. A banda de transmissão entre 200 e 350 nm no espectro óptico de NSH foi observada com redução significativa em sua largura nos espectros de transmissão dos cristais dopados restringindo assim a região do espectro conhecida como UVA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 μm. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 μm that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO3, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 μm and an optical depth in the range 0.002-0.02 at 1 μm provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 μm, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 μm as well as longward of 8 μm, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differential Phase Shift Keying (DPSK) modulation format has been shown as a robust solution for next-generation optical transmission systems. One key device enabling such systems is the delay interferometer, converting the signal phase information into intensity modulation to be detected by the photodiodes. Usually, Mach-Zehnder interferometer (MZI) is used for demodulating DPSK signals. In this paper, we developed an MZI which is based on all-fiber Multimode Interference (MI) structure: a multimode fiber (MMF) located between two single-mode fibers (SMF) without any transition zones. The standard MZI is not very stable since the two beams go through two different paths before they recombine. In our design the two arms of the MZI are in the same fiber, which will make it less temperature-sensitive than the standard MZI. Performance of such MZI will be analyzed from transmission spectrum. Finally such all-fiber MI-based MZI (MI-MZI) is used to demodulate 10 Gbps DPSK signals. The demodulated signals are analyzed from eye diagram and bit error rate (BER).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical filters are crucial elements in optical communications. The influence of cascaded filters in the optical signal will affect the communications quality seriously. In this paper we will study and simulate the optical signal impairment caused by different kinds of filters which include Butterworth, Bessel, Fiber Bragg Grating (FBG) and Fabry-Perot (FP). Optical signal impairment is analyzed from an Eye Opening Penalty (EOP) and optical spectrum point of view. The simulation results show that when the center frequency of all filters aligns with the laser’s frequency, the Butterworth has the smallest influence to the signal while the F-P has the biggest. With a -1dB EOP, the amount of cascaded Butterworth optical filters with a bandwidth of 50 GHz is 18 in 40 Gbps NRZ-DQPSK systems and 12 in 100 Gbps PMNRZ- DQPSK systems. The value is reduced to 9 and 6 respectively for Febry-Perot optical filters. In the situation of frequency misalignment, the impairment caused by filters is more serious. Our research shows that with a frequency deviation of 5 GHz, only 12 and 9 Butterworth optical filters can be cascaded in 40 Gbps NRZ-DQPSK and 100 Gbps PM-NRZ-DQPSK systems respectively. We also study the signal impairment caused by different orders of the Butterworth filter model. Our study shows that although the higher-order has a smaller clipping effect in the transmission spectrum, it will introduce a more serious phase ripple which seriously affects the signal. Simulation result shows that the 2nd order Butterworth filter has the best performance.