893 resultados para transformation induced plasticity
Resumo:
The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation of failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure. (C) 2014 AIP Publishing LLC.
Resumo:
Based on detailed x-ray diffraction and transmission electron microscopy we have found body-centered-cubic (bcc) Ni upon room-temperature rolling of nanocrystalline (nc) face-centered-cubic (fcc) Ni. The bcc phase forms via the Kurdjumov-Sachs (KS) martensitic transformation mechanism when the von Mises equivalent strain exceeds similar to 0.3, much higher than accessible in tensile testing. The fcc and bcc phases keep either the KS or the Nishiyama-Wasserman orientation relationship. Our results provide insights into the deformation physics in nc Ni, namely, the fcc-to-bcc phase transformation can also accommodate plasticity at large plastic strains. (C) 2008 American Institute of Physics.
Do clonal growth form and habitat origin affect resource-induced plasticity in Tibetan alpine herbs?
Resumo:
The aim of this study was to analyze the plastic effects of moderate exercise upon the motor cortex (M1 and M2 areas), cerebellum (Cb), and striatum (CPu) of the rat brain This assessment was made by verifying the expression of AMPA type glutamate receptor subunits (GluR1 and GluR2/3) We used adult Wistar rats, divided into 5 groups based on duration of exercise training, namely 3 days (EX3), 7 days (EX7) 15 days (EX15) 30 days (EX30), and sedentary (S) The exercised animals were subjected to a treadmill exercise protocol at the speed of the 10 meters/min for 40 mm After exercise, the brains were subjected to immunohistochemistry and immunoblotting to analyze changes of GluR1 and GluR2/3, and plasma cortcosterone was measured by ELISA in order to verify potential stress induced by physical training Overall the results of immunohistochemistry and immunoblotting were similar and revealed that GluR subunits show distinct responses over the exercise periods and for the different structures analyzed In general, there was increased expression of GluR subunits after longer exercise periods (such as EX30) although some opposite effects were seen after short periods of exercise (Ex3) In a few cases biphasic patterns with decreases and subsequent increases of GluR expression were seen and may represent the outcome of exercise dependent, complex regulatory processes The data show that the protocol used was able to promote plastic GluR changes during exercise, suggesting a specific involvement of these receptors in exercise induced plasticity processes in the brain areas tested (C) 2010 Elsevier B V All rights reserved
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Nerve injury is known to produce a variety of electrophysiological and morphological neuronal alterations (reviewed by Titmus and Faber, 1990; Bulloch and Ridgeway, 1989; Walters, 1994). Determining if these alterations are adaptive and how they are activated and maintained could provide important insight into basic cellular mechanisms of injury-induced plasticity. Furthermore, characterization of injury-induced plasticity provides a useful assay system for the identification of possible induction signals underlying these neuronal changes. Understanding fundamental mechanisms and underlying induction signals of injury-induced neuronal plasticity could facilitate development of treatment strategies for neural injury and neuropathic pain in humans.^ This dissertation characterizes long-lasting, injury-induced neuronal alterations using the nervous system of Aplysia californica as a model. These changes are examined at the behavioral, electrophysiological, and morphological levels. Injury-induced changes in the electrophysiological properties of neurons were found that increased the signaling effectiveness of the injured neurons. This increase in signalling effectiveness could act to compensate for partial destruction of the injured neuron's peripheral processes. Recovery of a defensive behavioral response which serves to protect the animal from further injury was found within 2 weeks of injury. For the behavioral recovery to occur, new neural pathways must have been formed between the denervated area and the CNS. This was found to be mediated at least in part by new axonal growth which extended from the injured cell back along the original pathway (i.e. into the injured nerve). In addition, injury produced central axonal sprouting into different nerves that do not usually contain the injured neuron's axons. This could be important for (i) finding alternative pathways to the periphery when the original pathways are impassable and (ii) the formation of additional synaptic connections with post-synaptic targets which would further enhance the signalling effectiveness of the injured cell. ^
Resumo:
The ability to respond plastically to the environment has allowed amphibians to evolve adaptive responses to spatial and temporal variation in predation threat. However, animals exposed to predators may also show costs of plasticity or tradeoffs. This study examines predator-induced plasticity in larval development, behavior, and metamorphosis in the spotted salamander, Ambystoma maculatum. Salamanders were raised in two treatments: with predator cues (a fish predator, genus Lepomis, on the other side of a divided tank), or without predator cues. During the larval stage the predator treatment group experienced higher mortality rates than the no-predator treatment group. Behavioral trials revealed that predator treatment animals ate less than those not exposed, and that this feeding response was immediately inducible and had lasting effects. Animals in the predator treatment group had smaller tail areas during the mid-larval period. Feeding and body size effects may have contributed to increased mortality in the predator-treatment animals. The timing of metamorphic onset was not affected by the presence of predators, but predator-treatment salamanders had shorter snout/vent lengths at metamorphosis. The duration of metamorphosis showed a potentially adaptive plastic response to the presence of predator cues: metamorphosis was longest in the no-predator treatment group, reduced in the predator treatment group, and even further reduced for animals exposed to predator cues only during metamorphosis. Overall, we found a mix of potentially adaptive and costly plastic responses in spotted salamanders.
Resumo:
The retroviral oncogene qin codes for a protein that belongs to the family of the winged helix transcription factors. The viral Qin protein, v-Qin, differs from its cellular counterpart, c-Qin, by functioning as a stronger transcriptional repressor and a more efficient inducer of tumors. This observation suggests that repression may be important in tumorigenesis. To test this possibility, chimeric proteins were constructed in which the Qin DNA-binding domain was fused to either a strong repressor domain (derived from the Drosophila Engrailed protein) or a strong activator domain (from the herpes simplex virus VP16 protein). The chimeric transcriptional repressor, Qin–Engrailed, transformed chicken embryo fibroblasts in culture and induced sarcomas in young chickens. The chimeric activator, Qin–VP16, failed to transform cells in vitro or in vivo and caused cellular resistance to oncogenic transformation by Qin. These data support the conclusion that the Qin protein induces oncogenic transformation by repressing the transcription of genes which function as negative growth regulators or tumor suppressors.
Resumo:
The v-jun oncogene encodes a nuclear DNA binding protein that functions as a transcription factor and is part of the activator protein 1 complex. Oncogenic transformation by v-jun is thought to be mediated by the aberrant expression of specific target genes. To identify such Jun-regulated genes and to explore the mechanisms by which Jun affects their expression, we have fused the full-length v-Jun and an amino-terminally truncated form of v-Jun to the hormone-binding domain of the human estrogen receptor. The two chimeric proteins function as ligand-inducible transactivators. Expression of the fusion proteins in chicken embryo fibroblasts causes estrogen-dependent transformation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
TRIP (Transformation Induced Plasticity) and DP (Dual-Phase) steels are written in a new series of steels which present excellent mechanical properties. As for microstructure aspect, TRIP steels consist on a ferrite matrix with a second phase dispersion of other constituents, such as bainite, martensite and retained austenite, while dual-phase steels consist on martensite dispersion in a ferrite matrix. In order to identify the different microconstituents present in these materials, microstructure characterization techniques by optical microscopy (using different etchants: LePera, Heat-Tinting and Nital) and scanning electron microscopy were carried out. This being so, microstructures were correlated with mechanical properties of materials, determined by means of tensile tests. It is concluded that steels assisted by TRIP effect have a strength and elongation relation higher than the dual-phase one. With microstructure characterization, it was observed phases present in these materials microstructure.
Resumo:
In the second half of the last century the automobile industries suffered from the petroleum crisis caused mainly by the wars in the Middle East. These crises led the automakers rethink their vehicles. One of the most important events after that was the adoption of new steels by the industry. One example is the TRIP steels (Transformationinduced plasticity). It is known that the macroscopic behavior of a material is strongly dependent on its microstructure and therefore the quantitative metallography is important to understand and relate the material properties to its microstructure. In this work, different specimens of TRIP steels were etched using LePera reagent. The obtained images were analyzed using digital processing. Using the ImageJ software the methods threshold and watershed were studied as well as a comparison with the ASTM E562 standard. The methods were compared and finally the morphological characteristics and volumetric fraction of the retained austenite and martensite phases were analyzed. The results showed that the threshold led to a higher number of identified grains with lower mean area and total area fraction than the watershed method and ASTM standard
Resumo:
The bcr-abl chimeric oncoprotein exhibits deregulated protein tyrosine kinase activity and is implicated in the pathogenesis of Philadelphia chromosome (Ph)-positive human leukemias, such as chronic myelogenous leukemia (CML). Recently we have shown that the levels of the protein tyrosine phosphatase PTP1B are enhanced in p210 bcr-abl-expressing cell lines. Furthermore, PTP1B recognizes p210 bcr-abl as a substrate, disrupts the formation of a p210 bcr-abl/Grb2 complex, and inhibits signaling events initiated by this oncoprotein PTK. In this report, we have examined whether PTP1B effects transformation induced by p210 bcr-abl. We demonstrate that expression of either wild-type PTP1B or the substrate-trapping mutant form of the enzyme (PTP1B-D181A) in p210 bcr-abl-transformed Rat-1 fibroblasts diminished the ability of these cells to form colonies in soft agar, to grow in reduced serum, and to form tumors in nude mice. In contrast, TCPTP, the closest relative of PTP1B, did not effect p210 bcr-abl-induced transformation. Furthermore, neither PTP1B nor TCPTP inhibited transformation induced by v-Abl. In addition, overexpression of PTP1B or treatment with CGP57148, a small molecule inhibitor of p210 bcr-abl, induced erythroid differentiation of K562 cells, a CML cell line derived from a patient in blast crisis. These data suggest that PTP1B is a selective, endogenous inhibitor of p210 bcr-abl and is likely to be important in the pathogenesis of CML.