921 resultados para topological complexity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Date of Acceptance: 5/04/2015 15 pages, 4 figures

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Leu-Enkephalin in explicit water is simulated using classical molecular dynamics. A ß-turn transition is investigated by calculating the topological complexity (in the "computational mechanics" framework [J. P. Crutchfield and K. Young, Phys. Rev. Lett., 63, 105 (1989)]) of the dynamics of both the peptide and the neighbouring water molecules. The complexity of the atomic trajectories of the (relatively short) simulations used in this study reflect the degree of phase space mixing in the system. It is demonstrated that the dynamic complexity of the hydrogen atoms of the peptide and almost all of the hydrogens of the neighbouring waters exhibit a minimum precisely at the moment of the ß-turn transition. This indicates the appearance of simplified periodic patterns in the atomic motion, which could correspond to high-dimensional tori in the phase space. It is hypothesized that this behaviour is the manifestation of the effect described in the approach to molecular transitions by Komatsuzaki and Berry [T. Komatsuzaki and R.S. Berry, Adv. Chem. Phys., 123, 79 (2002)], where a "quasi-regular" dynamics at the transition is suggested. Therefore, for the first time, the less chaotic character of the folding transition in a realistic molecular system is demonstrated. © Springer-Verlag Berlin Heidelberg 2006.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Circular proteins are a recently discovered phenomenon. They presumably evolved to confer advantages over ancestral linear proteins while maintaining the intrinsic biological functions of those proteins. In general, these advantages include a reduced sensitivity to proteolytic cleavage and enhanced stability. In one remarkable family of circular proteins, the cyclotides, the cyclic backbone is additionally braced by a knotted arrangement of disulfide bonds that confers additional stability and topological complexity upon the family. This article describes the discovery, structure, function and biosynthesis of the currently known circular proteins. The discovery of naturally occurring circular proteins in the past few years has been complemented by new chemical and biochemical methods to make synthetic circular proteins; these are also briefly described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two-way alternating automata were introduced by Vardi in order to study the satisfiability problem for the modal μ-calculus extended with backwards modalities. In this paper, we present a very simple proof by way of Wadge games of the strictness of the hierarchy of Motowski indices of two-way alternating automata over trees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study on chaos and fractals in general topological spaces. Chaos theory originated with the work of Edward Lorenz. The phenomenon which changes order into disorder is known as chaos. Theory of fractals has its origin with the frame work of Benoit Mandelbrot in 1977. Fractals are irregular objects. In this study different properties of topological entropy in chaos spaces are studied, which also include hyper spaces. Topological entropy is a measures to determine the complexity of the space, and compare different chaos spaces. The concept of fractals can’t be extended to general topological space fast it involves Hausdorff dimensions. The relations between hausdorff dimension and packing dimension. Regular sets in Metric spaces using packing measures, regular sets were defined in IR” using Hausdorff measures. In this study some properties of self similar sets and partial self similar sets. We can associate a directed graph to each partial selfsimilar set. Dimension properties of partial self similar sets are studied using this graph. Introduce superself similar sets as a generalization of self similar sets and also prove that chaotic self similar self are dense in hyper space. The study concludes some relationships between different kinds of dimension and fractals. By defining regular sets through packing dimension in the same way as regular sets defined by K. Falconer through Hausdorff dimension, and different properties of regular sets also.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods from statistical physics, such as those involving complex networks, have been increasingly used in the quantitative analysis of linguistic phenomena. In this paper, we represented pieces of text with different levels of simplification in co-occurrence networks and found that topological regularity correlated negatively with textual complexity. Furthermore, in less complex texts the distance between concepts, represented as nodes, tended to decrease. The complex networks metrics were treated with multivariate pattern recognition techniques, which allowed us to distinguish between original texts and their simplified versions. For each original text, two simplified versions were generated manually with increasing number of simplification operations. As expected, distinction was easier for the strongly simplified versions, where the most relevant metrics were node strength, shortest paths and diversity. Also, the discrimination of complex texts was improved with higher hierarchical network metrics, thus pointing to the usefulness of considering wider contexts around the concepts. Though the accuracy rate in the distinction was not as high as in methods using deep linguistic knowledge, the complex network approach is still useful for a rapid screening of texts whenever assessing complexity is essential to guarantee accessibility to readers with limited reading ability. Copyright (c) EPLA, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce an easily computable topological measure which locates the effective crossover between segregation and integration in a modular network. Segregation corresponds to the degree of network modularity, while integration is expressed in terms of the algebraic connectivity of an associated hypergraph. The rigorous treatment of the simplified case of cliques of equal size that are gradually rewired until they become completely merged, allows us to show that this topological crossover can be made to coincide with a dynamical crossover from cluster to global synchronization of a system of coupled phase oscillators. The dynamical crossover is signaled by a peak in the product of the measures of intracluster and global synchronization, which we propose as a dynamical measure of complexity. This quantity is much easier to compute than the entropy (of the average frequencies of the oscillators), and displays a behavior which closely mimics that of the dynamical complexity index based on the latter. The proposed topological measure simultaneously provides information on the dynamical behavior, sheds light on the interplay between modularity and total integration, and shows how this affects the capability of the network to perform both local and distributed dynamical tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two variables define the topological state of closed double-stranded DNA: the knot type, K, and ΔLk, the linking number difference from relaxed DNA. The equilibrium distribution of probabilities of these states, P(ΔLk, K), is related to two conditional distributions: P(ΔLk|K), the distribution of ΔLk for a particular K, and P(K|ΔLk) and also to two simple distributions: P(ΔLk), the distribution of ΔLk irrespective of K, and P(K). We explored the relationships between these distributions. P(ΔLk, K), P(ΔLk), and P(K|ΔLk) were calculated from the simulated distributions of P(ΔLk|K) and of P(K). The calculated distributions agreed with previous experimental and theoretical results and greatly advanced on them. Our major focus was on P(K|ΔLk), the distribution of knot types for a particular value of ΔLk, which had not been evaluated previously. We found that unknotted circular DNA is not the most probable state beyond small values of ΔLk. Highly chiral knotted DNA has a lower free energy because it has less torsional deformation. Surprisingly, even at |ΔLk| > 12, only one or two knot types dominate the P(K|ΔLk) distribution despite the huge number of knots of comparable complexity. A large fraction of the knots found belong to the small family of torus knots. The relationship between supercoiling and knotting in vivo is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concepts of substantive beliefs and derived beliefs are defined, a set of substantive beliefs S like open set and the neighborhood of an element substantive belief. A semantic operation of conjunction is defined with a structure of an Abelian group. Mathematical structures exist such as poset beliefs and join-semilattttice beliefs. A metric space of beliefs and the distance of belief depending on the believer are defined. The concepts of closed and opened ball are defined. S′ is defined as subgroup of the metric space of beliefs Σ and S′ is a totally limited set. The term s is defined (substantive belief) in terms of closing of S′. It is deduced that Σ is paracompact due to Stone's Theorem. The pseudometric space of beliefs is defined to show how the metric of the nonbelieving subject has a topological space like a nonmaterial abstract ideal space formed in the mind of the believing subject, fulfilling the conditions of Kuratowski axioms of closure. To establish patterns of materialization of beliefs we are going to consider that these have defined mathematical structures. This will allow us to understand better cultural processes of text, architecture, norms, and education that are forms or the materialization of an ideology. This materialization is the conversion by means of certain mathematical correspondences, of an abstract set whose elements are beliefs or ideas, in an impure set whose elements are material or energetic. Text is a materialization of ideology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mythical and religious belief systems in a social context can be regarded as a conglomeration of sacrosanct rites, which revolve around substantive values that involve an element of faith. Moreover, we can conclude that ideologies, myths and beliefs can all be analyzed in terms of systems within a cultural context. The significance of being able to define ideologies, myths and beliefs as systems is that they can figure in cultural explanations. This, in turn, means that such systems can figure in logic-mathematical analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel molecular complexity measures are designed based on the quantum molecular kinematics. The Hamiltonian matrix constructed in a quasi-topological approximation describes the temporal evolution of the modelled electronic system and determined the time derivatives for the dynamic quantities. This allows to define the average quantum kinematic characteristics closely related to the curvatures of the electron paths, particularly, the torsion reflecting the chirality of the dynamic system. A special attention has been given to the computational scheme for this chirality measure. The calculations on realistic molecular systems demonstrate reasonable behaviour of the proposed molecular complexity indices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new criterion has been recently proposed combining the topological instability (lambda criterion) and the average electronegativity difference (Delta e) among the elements of an alloy to predict and select new glass-forming compositions. In the present work, this criterion (lambda.Delta e) is applied to the Al-Ni-La and Al-Ni-Gd ternary systems and its predictability is validated using literature data for both systems and additionally, using own experimental data for the Al-La-Ni system. The compositions with a high lambda.Delta e value found in each ternary system exhibit a very good correlation with the glass-forming ability of different alloys as indicated by their supercooled liquid regions (Delta T(x)) and their critical casting thicknesses. In the case of the Al-La-Ni system, the alloy with the largest lambda.Delta e value, La(56)Al(26.5)Ni(17.5), exhibits the highest glass-forming ability verified for this system. Therefore, the combined lambda.Delta e criterion is a simple and efficient tool to select new glass-forming compositions in Al-Ni-RE systems. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3563099]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the early Holocene two main paleoamerican cultures thrived in Brazil: the Tradicao Nordeste in the semi-desertic Sertao and the Tradicao Itaparica in the high plains of the Planalto Central. Here we report on paleodietary singals of a Paleoamerican found in a third Brazilian ecological setting - a riverine shellmound, or sambaqui, located in the Atlantic forest. Most sambaquis are found along the coast. The peoples associated with them subsisted on marine resources. We are reporting a different situation from the oldest recorded riverine sambaqui, called Capelinha. Capelinha is a relatively small sambaqui established along a river 60 km from the Atlantic Ocean coast. It contained the well-preserved remains of a Paleoamerican known as Luzio dated to 9,945 +/- 235 years ago; the oldest sambaqui dweller so far. Luzio's bones were remarkably well preserved and allowed for stable isotopic analysis of diet. Although artifacts found at this riverine site show connections with the Atlantic coast, we show that he represents a population that was dependent on inland resources as opposed to marine coastal resources. After comparing Luzio's paleodietary data with that of other extant and prehistoric groups, we discuss where his group could have come from, if terrestrial diet persisted in riverine sambaquis and how Luzio fits within the discussion of the replacement of paleamerican by amerindian morphology. This study adds to the evidence that shows a greater complexity in the prehistory of the colonization of and the adaptations to the New World.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport properties of the ""inverted"" semiconductor HgTe-based quantum well, recently shown to be a two-dimensional topological insulator, are studied experimentally in the diffusive regime. Nonlocal transport measurements are performed in the absence of magnetic field, and a large signal due to the edge states is observed. This shows that the edge states can propagate over a long distance, similar to 1 mm, and therefore, there is no difference between local and nonlocal electrical measurements in a topological insulator. In the presence of an in-plane magnetic field a strong decrease of the local resistance and complete suppression of the nonlocal resistance is observed. We attribute this behavior to an in-plane magnetic-field-induced transition from the topological insulator state to a conventional bulk metal state.