282 resultados para thrombus
Can eccentric arterial plaques alone cause flow stagnation points and favour thrombus incorporation?
Resumo:
We have used an experimental model of aorta stenosis, with a Plexiglas plug, simulating a stable atheromatous plaque that promotes local turbulence and thrombosis. With animal survival of more than 24 h, we followed the partial fibrinolysis of the thrombus as well as its posterior organization and incorporation to the arterial wall as a neointima for up to 30 days. The mushroom plug form permitted the development of recirculation and stasis areas around it, favouring this evolution. Despite noted limitations, this study demonstrates that thrombus incorporation can contribute to plaque extension, as it can promote recirculation and stasis areas.
Resumo:
Prostacyclin (PgI(2)) and endothelium-derived nitric oxide (EDNO) are produced by the arterial and venous endothelium. In addition to their vasodilator action on vascular smooth muscle, both act together to inhibit platelet aggregation and promote platelet disaggregation. EDNO also inhibits platelet adhesion to the endothelium. EDNO and PgI(2) have been shown to be released from the cultured endocardial cells. In this study, we examined the release of vasoactive substances from the intact endocardium by using isolated rabbit hearts perfused with physiological salt solution (95% O(2)/5% CO(2), T = 37 degrees C). The right and left cardiac chambers were perfused through separate constant-flow perfusion loops (physiological salt solution, 8 ml min(-1)). Effluent from left and right cardiac, separately, was bioassayed on canine coronary artery smooth muscle, which had been contracted with prostaglandin F(2 alpha_)(2 x 10(-6) M) and no change in tension was exhibit. However, addition of calcium ionophore A23187 (10(-6) M) to the cardiac chambers` perfusion line induced vasodilation of the bioassay coronary ring, 61.4 +/- 7.4% versus 70.49 +/- 6.1% of initial prostaglandin F(2 alpha) contraction for the left and right cardiac chambers perfusate, respectively (mean +/- SEM, n = 10, p > 0.05). Production of vasodilator was blocked totally in the left heart but, only partially blocked in the right heart by adding indomethacin (10(-5) M) to the perfusate, respectively, 95.2 +/- 2.2% versus 41.5 +/- 4.8% (mean +/- SEM, n = 10, p < 0.05). 6-Keto prostaglandin F(1 alpha), measured in the endocardial superfusion effluent was also higher for the left cardiac chambers than for the right at the time of stimulation with the A23187, respectively, 25385.88 +/- 5495 pg/ml (n = 8) versus 13,132.45 +/- 1839.82 pg/ml (n = 8), (p < 0.05). These results showed that cyclooxygenase pathway plays major role in generating vasoactive substances for the left cardiac chamber endocardium; while it is not the main pathway for the right ventricular endocardium at which EDNO and PgI(2) Could act together and potentiate their antithrombogenic activities in isolated perfused rabbit heart. This may be an explanation for the intraventricular thrombus mostly seen in left ventricle rather than in right ventricle as a complication of myocardial infarction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE:Endograft mural thrombus has been associated with stent graft or limb thrombosis after endovascular aneurysm repair (EVAR). This study aimed to identify clinical and morphologic determinants of endograft mural thrombus accumulation and its influence on thromboembolic events after EVAR. METHODS: A prospectively maintained database of patients treated by EVAR at a tertiary institution from 2000 to 2012 was analyzed. Patients treated for degenerative infrarenal abdominal aortic aneurysms and with available imaging for thrombus analysis were considered. All measurements were performed on three-dimensional center-lumen line computed tomography angiography (CTA) reconstructions. Patients with thrombus accumulation within the endograft's main body with a thickness >2 mm and an extension >25% of the main body's circumference were included in the study group and compared with a control group that included all remaining patients. Clinical and morphologic variables were assessed for association with significant thrombus accumulation within the endograft's main body by multivariate regression analysis. Estimates for freedom from thromboembolic events were obtained by Kaplan-Meier plots. RESULTS: Sixty-eight patients (16.4%) presented with endograft mural thrombus. Median follow-up time was 3.54 years (interquartile range, 1.99-5.47 years). In-graft mural thrombus was identified on 30-day CTA in 22 patients (32.4% of the study group), on 6-month CTA in 8 patients (11.8%), and on 1-year CTA in 17 patients (25%). Intraprosthetic thrombus progressively accumulated during the study period in 40 patients of the study group (55.8%). Overall, 17 patients (4.1%) presented with endograft or limb occlusions, 3 (4.4%) in the thrombus group and 14 (4.1%) in the control group (P = .89). Thirty-one patients (7.5%) received an aortouni-iliac (AUI) endograft. Two endograft occlusions were identified among AUI devices (6.5%; overall, 0.5%). None of these patients showed thrombotic deposits in the main body, nor were any outflow abnormalities identified on the immediately preceding CTA. Estimated freedom from thromboembolic events at 5 years was 95% in both groups (P = .97). Endograft thrombus accumulation was associated with >25% proximal aneurysm neck thrombus coverage at baseline (odds ratio [OR], 1.9; 95% confidence interval [CI], 1.1-3.3), neck length ≤ 15 mm (OR, 2.4; 95% CI, 1.3-4.2), proximal neck diameter ≥ 30 mm (OR, 2.4; 95% CI, 1.3-4.6), AUI (OR, 2.2; 95% CI, 1.8-5.5), or polyester-covered stent grafts (OR, 4.0; 95% CI, 2.2-7.3) and with main component "barrel-like" configuration (OR, 6.9; 95% CI, 1.7-28.3). CONCLUSIONS: Mural thrombus formation within the main body of the endograft is related to different endograft configurations, main body geometry, and device fabric but appears to have no association with the occurrence of thromboembolic events over time.
Resumo:
Background- Formation of platelet plug initiates hemostasis after vascular injury and triggers thrombosis in ischemic disease. However, the mechanisms leading to the formation of a stable thrombus are poorly understood. Connexins comprise a family of proteins that form gap junctions enabling intercellular coordination of tissue activity, a process termed gap junctional intercellular communication. Methods and Results- In the present study, we show that megakaryocytes and platelets express connexin 37 (Cx37). Deletion of the Cx37 gene in mice shortens bleeding time and increases thrombus propensity. Aggregation is increased in murine Cx37(-/-) platelets or in murine Cx37(+/+) and human platelets treated with gap junction blockers. Intracellular microinjection of neurobiotin, a Cx37-permeant tracer, revealed gap junctional intercellular communication in platelet aggregates, which was impaired in Cx37(-/-) platelets and in human platelets exposed to gap junction blockers. Finally, healthy subjects homozygous for Cx37-1019C, a prognostic marker for atherosclerosis, display increased platelet responses compared with subjects carrying the Cx37-1019T allele. Expression of these polymorphic channels in communication-deficient cells revealed a decreased permeability of Cx37-1019C channels for neurobiotin. Conclusions- We propose that the establishment of gap junctional communication between Cx37-expressing platelets provides a mechanism to limit thrombus propensity. To our knowledge, these data provide the first evidence incriminating gap junctions in the pathogenesis of thrombosis.
Resumo:
Injury of an arterial vessel wall acutely triggers a multifaceted process of thrombus formation, which is dictated by the high-shear flow conditions in the artery. In this overview, we describe how the classical concept of arterial thrombus formation and vascular occlusion, driven by platelet activation and fibrin formation, can be extended and fine-tuned. This has become possible because of recent insight into the mechanisms of: (i) platelet-vessel wall and platelet-platelet communication, (ii) autocrine platelet activation, and (iii) platelet-coagulation interactions, in relation to blood flow dynamics. We list over 40 studies with genetically modified mice showing a role of platelet and plasma proteins in the control of thrombus stability after vascular injury. These include multiple platelet adhesive receptors and other junctional molecules, components of the ADP receptor signalling cascade to integrin activation, proteins controlling platelet shape, and autocrine activation processes, as well as multiple plasma proteins binding to platelets and proteins of the intrinsic coagulation cascade. Regulatory roles herein of the endothelium and other blood cells are recapitulated as well. Patient studies support the contribution of platelet- and coagulation activation in the regulation of thrombus stability. Analysis of the factors determining flow-dependent thrombus stabilization and embolus formation in mice will help to understand the regulation of this process in human arterial disease.
Resumo:
BACKGROUND: The effects of intravenous thrombolysis on floating thrombi in cervical and intracranial arteries of acute ischemic stroke patients are unknown. Similarly, the best prevention methods of early recurrences remain controversial. This study aimed to describe the clinical and radiological outcome of thrombolyzed strokes with floating thrombi. METHODS: We retrospectively analyzed all thrombolyzed stroke patients in our institution between 2003 and 2010 with floating thrombi on acute CT-angiography before the intravenous thrombolysis. The floating thrombus was diagnosed if an elongated thrombus of at least 5 mm length, completely surrounded by contrast on supra-aortic neck or intracerebral arteries, was present on CT-angiography. Demographics, vascular risk factors, and comorbidities were recorded and stroke etiology was determined after a standardized workup. Repeat arterial imaging was performed by CTA at 24 h or before if clinical worsening was noted and then by Doppler and MRA during the first week and at four months. RESULTS: Of 409 thrombolyzed stroke patients undergoing acute CT Angiography, seven (1.7%) had a floating thrombus; of these seven, six had it in the anterior circulation. Demographics, risk factors and stroke severity of these patients were comparable to the other thrombolyzed patients. After intravenous thrombolysis, the floating thrombi resolved completely at 24 h in four of the patients, whereas one had an early recurrent stroke and one developed progressive worsening. One patient developed early occlusion of the carotid artery with floating thrombus and subsequently a TIA. The two patients with a stable floating thrombus had no clinical recurrences. In the literature, only one of four reported cases were found to have a thrombolysis-related early recurrence. CONCLUSIONS: Long-term outcome seemed similar in thrombolyzed patients with floating thrombus, despite a possible increase of very early recurrence. It remains to be established whether acute mechanical thrombectomy could be a safer and more effective treatment to prevent early recurrence. However, intravenous thrombolysis should not be withheld in eligible stroke patients.
Resumo:
BACKGROUND: Management of ischemic stroke in the presence of aneurysmal brain disease is controversial. Recent retrospective evidence suggests that in selected patients, intravenous thrombolysis (IVT) remains a safe approach for reperfusion. METHODS: We document a case of post-thrombolysis aneurysmal rupture. Supported by additional scientific literature we postulate that acute aneurysmal thrombosis leading to stroke in the culprit artery may be an ominous sign of rupture and should be considered separately from fortuitously discovered distant aneurysmal disease. RESULTS: A 71-year-old female presented with an acute right middle cerebral artery stroke syndrome. IVT allowed vessel reperfusion and revealed a previously concealed, juxtaposed non-giant M1 segment saccular aneurysm. Secondary aneurysmal rupture ensued. The aneurysm was secured by surgical clipping. Postoperative course was uneventful. CONCLUSIONS: This case shows that despite reports of thrombolysis safety in the presence of brain aneurysms, thrombolysis remains potentially hazardous and hints toward an increased risk when the stroke arises on the parent vessel itself.
Resumo:
PURPOSE: To determine the lower limit of dose reduction with hybrid and fully iterative reconstruction algorithms in detection of endoleaks and in-stent thrombus of thoracic aorta with computed tomographic (CT) angiography by applying protocols with different tube energies and automated tube current modulation. MATERIALS AND METHODS: The calcification insert of an anthropomorphic cardiac phantom was replaced with an aortic aneurysm model containing a stent, simulated endoleaks, and an intraluminal thrombus. CT was performed at tube energies of 120, 100, and 80 kVp with incrementally increasing noise indexes (NIs) of 16, 25, 34, 43, 52, 61, and 70 and a 2.5-mm section thickness. NI directly controls radiation exposure; a higher NI allows for greater image noise and decreases radiation. Images were reconstructed with filtered back projection (FBP) and hybrid and fully iterative algorithms. Five radiologists independently analyzed lesion conspicuity to assess sensitivity and specificity. Mean attenuation (in Hounsfield units) and standard deviation were measured in the aorta to calculate signal-to-noise ratio (SNR). Attenuation and SNR of different protocols and algorithms were analyzed with analysis of variance or Welch test depending on data distribution. RESULTS: Both sensitivity and specificity were 100% for simulated lesions on images with 2.5-mm section thickness and an NI of 25 (3.45 mGy), 34 (1.83 mGy), or 43 (1.16 mGy) at 120 kVp; an NI of 34 (1.98 mGy), 43 (1.23 mGy), or 61 (0.61 mGy) at 100 kVp; and an NI of 43 (1.46 mGy) or 70 (0.54 mGy) at 80 kVp. SNR values showed similar results. With the fully iterative algorithm, mean attenuation of the aorta decreased significantly in reduced-dose protocols in comparison with control protocols at 100 kVp (311 HU at 16 NI vs 290 HU at 70 NI, P ≤ .0011) and 80 kVp (400 HU at 16 NI vs 369 HU at 70 NI, P ≤ .0007). CONCLUSION: Endoleaks and in-stent thrombus of thoracic aorta were detectable to 1.46 mGy (80 kVp) with FBP, 1.23 mGy (100 kVp) with the hybrid algorithm, and 0.54 mGy (80 kVp) with the fully iterative algorithm.