956 resultados para the second law of thermodynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We establish a refined version of the Second Law of Thermodynamics for Langevin stochastic processes describing mesoscopic systems driven by conservative or non-conservative forces and interacting with thermal noise. The refinement is based on the Monge-Kantorovich optimal mass transport and becomes relevant for processes far from quasi-stationary regime. General discussion is illustrated by numerical analysis of the optimal memory erasure protocol for a model for micron-size particle manipulated by optical tweezers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f ( R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accretion of a phantom fluid with non-zero chemical potential by black holes is discussed with basis on the generalized second law of thermodynamics. For phantom fluids with positive temperature and negative chemical potential we demonstrate that the accretion process is possible, and that the condition guaranteeing the positiveness of the phantom fluid entropy coincides with the one required by the generalized second law. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an extension of the original thought experiment proposed by Geroch, which sparked much of the actual debate and interest on black hole thermodynamics, and show that the generalized second law of thermodynamics is in compliance with it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The third law of thermodynamics is formulated precisely: all points of the state space of zero temperature I""(0) are physically adiabatically inaccessible from the state space of a simple system. In addition to implying the unattainability of absolute zero in finite time (or ""by a finite number of operations""), it admits as corollary, under a continuity assumption, that all points of I""(0) are adiabatically equivalent. We argue that the third law is universally valid for all macroscopic systems which obey the laws of quantum mechanics and/or quantum field theory. We also briefly discuss why a precise formulation of the third law for black holes remains an open problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have simulated numerically an automated Maxwell's demon inspired by Smoluchowski's ideas of 1912. Two gas chambers of equal area are connected via an opening that is covered by a trapdoor. The trapdoor can open to the left but not to the right, and is intended to rectify naturally occurring variations in density between the two chambers. Our results confirm that though the trapdoor behaves as a rectifier when large density differences are imposed by external means, it can not extract useful work from the thermal motion of the molecules when left on its own.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of time is associated with a positive mean entropy production. Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated spin-1/2 system following fast quenches of an external magnetic field and experimentally demonstrate that it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic process and its time-reverse. Our result addresses the concept of irreversibility from a microscopic quantum standpoint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of the world’s citizens now live in cities. Although urban planning can thus be thought of as a field with significant ramifications on the human condition, many practitioners feel that it has reached the crossroads in thought leadership between traditional practice and a new, more participatory and open approach. Conventional ways to engage people in participatory planning exercises are limited in reach and scope. At the same time, socio-cultural trends and technology innovation offer opportunities to re-think the status quo in urban planning. Neogeography introduces tools and services that allow non-geographers to use advanced geographical information systems. Similarly, is there potential for the emergence of a neo-planning paradigm in which urban planning is carried out through active civic engagement aided by Web 2.0 and new media technologies thus redefining the role of practicing planners? This paper traces a number of evolving links between urban planning, neogeography and information and communication technology. Two significant trends – participation and visualisation – with direct implications for urban planning are discussed. Combining advanced participation and visualisation features, the popular virtual reality environment Second Life is then introduced as a test bed to explore a planning workshop and an integrated software event framework to assist narrative generation. We discuss an approach to harness and analyse narratives using virtual reality logging to make transparent how users understand and interpret proposed urban designs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper argues a model of adaptive design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of efficient use of energy and material resource in the life-cycle of buildings, active involvement of the occupants into micro-climate control within the building, and the natural environment as the physical context. The interactions amongst all the parameters compose a complex system of sustainable architecture design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The latest interpretation of the Second Law of Thermodynamics states a microscopic formulation of an entropy evolution of complex open systems. It provides a design framework for an adaptive system evolves for the optimization in open systems, this adaptive system evolves for the optimization of building environmental performance. The paper concludes that adaptive modelling in entropy evolution is a design alternative for sustainable architecture.