989 resultados para technetium 101
Resumo:
Three carbohydrate conjugated dipicolylamine chelators, 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-beta-D-glucopyranoside (L(1)), 2-bis(2-pyridinylmethyl)amino)ethyl-beta-D-glucopyranoside (L(2)), and 2-bis(2-pyridinylmethyl)amino)carboxamide-N-(2-amino-2-deoxy-D-glucopyranose) (L(3)) were complexed to the [M(Co)(3)](+) core (M=Tc, Re) and the properties of the resulting complexes were investigated. Synthesis and characterization of the chelator 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-beta-D-glucopyranoside (L(1)) and the corresponding Re complex are reported. All chelators were radiolabeled in high yield with [(99)mTc(CO)(3)(H(2)O)(3)](+) ( > 98%) and [(186)Re(CO)(3)(H(2)O)(3)](+) ( > 80%). The chelators and Re-complexes were determined to not be substrates for the glucose metabolism enzyme hexokinase. However, the biodistribution of each of the (99m)Tc complexes demonstrated fast clearance from most background tissue, including >75% clearance of the activity in the kidneys and the liver within 2 h post-injection. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Absorption kinetics of solutes given with the subcutaneous administration of fluids is ill-defined. The gamma emitter, technitium pertechnetate, enabled estimates of absorption rate to be estimated independently using two approaches. In the first approach, the counts remaining at the site were estimated by imaging above the subcutaneous administration site, whereas in the second approach, the plasma technetium concentration-time profiles were monitored up to 8 hr after technetium administration. Boluses of technetium pertechnetate were given both intravenously and subcutaneously on separate occasions with a multiple dosing regimen using three doses on each occasion. The disposition of technetium after iv administration was best described by biexponential kinetics with a V-ss of 0.30 +/- 0.11 L/kg and a clearance of 30.0 +/- 13.1 ml/min. The subcutaneous absorption kinetics was best described as a single exponential process with a half-life of 18.16 +/- 3.97 min by image analysis and a half-life of 11.58 +/- 2.48 min using plasma technetium time data. The bioavailability of technetium by the subcutaneous route was estimated to be 0.96 +/- 0.12. The absorption half-life showed no consistent change with the duration of the subcutaneous infusion. The amount remaining at the absorption site with time was similar when analyzed using image analysis, and plasma concentrations assuming multiexponential disposition kinetics and a first-order absorption process. Profiles of fraction remaining at the absorption sire generated by deconvolution analysis, image analysis, and assumption of a constant first-order absorption process were similar. Slowing of absorption from the subcutaneous administration site is apparent after the last bolus dose in three of the subjects and can De associated with the stopping of the infusion. In a fourth subject, the retention of technetium at the subcutaneous site is more consistent with accumulation of technetium near the absorption site as a result of systemic recirculation.
Resumo:
Purpose To describe the ictal technetium-99 m-ECD SPECT findings in polymicrogyria syndromes (PMG) during epileptic seizures. Methods We investigated 17 patients with PMG syndromes during presurgical workup, which included long-term video-electroencephalographic (EEG) monitoring, neurological and psychiatry assessments, invasive EEG, and the subtraction of ictal-interictal SPECT coregistered to magnetic resonance imaging (MRI) (SISCOM). Results The analysis of the PMG cortex, using SISCOM, revealed intense hyperperfusion in the polymicrogyric lesion during epileptic seizures in all patients. Interestingly, other localizing investigations showed heterogeneous findings. Twelve patients underwent epilepsy surgery, three achieved seizure-freedom, five have worthwhile improvement, and four patients remained unchanged. Conclusions Our study strongly suggests the involvement of PMG in seizure generation or early propagation. Both conventional ictal single-photon emission computed tomography (SPECT) and SISCOM appeared as the single contributive exam to suggest the localization of the epileptogenic zone. Despite the limited number of resective epilepsy surgery in our study (n=9), we found a strong prognostic role of SISCOM in predicting surgical outcome. This result may be of great value on surgical decision-making of whether or not the whole or part of the PMG lesion should be surgically resected.
Resumo:
The 101 residue protein early pregnancy factor (EPF), also known as human chaperonin 10, was synthesized from four functionalized, but unprotected, peptide segments by a sequential thioether ligation strategy. The approach exploits the differential reactivity of a peptide-NHCH2CH2SH thiolate with XCH2CO-peptides, where X = Cl or I/Br. Initial model studies with short functionalized (but unprotected) peptides showed a significantly faster reaction of a peptide-NHCH2CH2SH thiolate with a BrCH2CO-peptide than with a CICH2CO-peptide, where thiolate displacement of the halide leads to chemoselective formation of a thioether surrogate for the Gly-Gly peptide bond. This rate difference was used as the basis of a novel sequential ligation approach to the synthesis of large polypeptide chains. Thus, ligation of a model bifunctional N-alpha-chloroacetyl, C-terminal thiolated peptide with a second N-alpha-bromoacetyl peptide demonstrated chemoselective bromide displacement by the thiol group. Further investigations showed that the relatively unreactive N-alpha-chloroacetyl peptides could be activated by halide exchange using saturated KI solutions to yield the highly reactive No-iodoacetyl peptides. These findings were used to formulate a sequential thioether ligation strategy for the synthesis of EPF, a 101 amino acid protein containing three Gly-Gly sites approximately equidistantly spaced within the peptide chain. Four peptide segments or cassettes comprising the EPF protein sequence (BrAc-[EPF 78-101] 12, ClAc-[EPF 58-75]-[NHCH2CH2SH] 13, ClAc-[EPF 30-55]-[NHCH2CH2SH] 14, and Ac-[EPF 1-27]-[NHCH2CH2SH] 15) of EPF were synthesized in high yield and purity using Boc SPPS chemistry. In the stepwise sequential ligation strategy, reaction of peptides 12 and 13 was followed by conversion of the N-terminal chloroacetyl functional group to an iodoacetyl, thus activating the product peptide for further ligation with peptide 14. The process of ligation followed by iodoacetyl activation was repeated to yield an analogue of EPF (EPF psi(CH2S)(28-29,56-57,76-77)) 19 in 19% overall yield.
Resumo:
This paper presents work in progress, to develop an efficient and economic way to directly produce Technetium 99metastable (99mTc) using low-energy cyclotrons. Its importance is well established and relates with the increased global trouble in delivering 99mTc to Nuclear Medicine Departments relying on this radioisotope. Since the present delivery strategy has clearly demonstrated its intrinsic limits, our group decided to follow a distinct approach that uses the broad distribution of the low energy cyclotrons and the accessibility of Molybdenum 100 (100Mo) as the Target material. This is indeed an important issue to consider, since the system here presented, named CYCLOTECH, it is not based on the use of Highly Enriched (or even Low Enriched) Uranium 235 (235U), so entirely complying with the actual international trends and directives concerning the use of this potential highly critical material. The production technique is based on the nuclear reaction 100Mo (p,2n) 99mTc whose production yields have already been documented. Until this moment two Patent requests have already been submitted (the first at the INPI, in Portugal, and the second at the USPTO, in the USA); others are being prepared for submission on a near future. The object of the CYCLOTECH system is to present 99mTc to Nuclear Medicine radiopharmacists in a routine, reliable and efficient manner that, remaining always flexible, entirely blends with established protocols. To facilitate workflow and Radiation Protection measures, it has been developed a Target Station that can be installed on most of the existing PET cyclotrons and that will tolerate up to 400 μA of beam by allowing the beam to strike the Target material at an adequately oblique angle. The Target Station permits the remote and automatic loading and discharge of the Targets from a carriage of 10 Target bodies. On other hand, several methods of Target material deposition and Target substrates are presented. The object was to create a cost effective means of depositing and intermediate the target material thickness (25 - 100μm) with a minimum of loss on a substrate that is able to easily transport the heat associated with high beam currents. Finally, the separation techniques presented are a combination of both physical and column chemistry. The object was to extract and deliver 99mTc in the identical form now in use in radiopharmacies worldwide. In addition, the Target material is recovered and can be recycled.
Resumo:
CYCLOTech is a high-tech Project, related with an innovative method for direct production of a radioactive pharmaceutical, used in excess of 85% of 35 Million Nuclear Medicine procedures done yearly, worldwide, representing globally more than 3 Billion Euros. The CYCLOTech team has developed an innovative proprietary methodology based on the use of Cyclotron Centers, formally identified as the Clients (actually, there are around 450 of this Centers in function worldwide), to directly produce and deliver the radiopharmaceutical to the final users, at the Hospitals and other Health Institutions (estimating at around 25.000, worldwide). The investment still need to finish Research and Technological Development (RTD), Industrial, Regulatory and Intellectual Property Rights (IPR) issues and allow the introduction in the Market is 4,35 M€, with a Payback of 3 years, with an Investment Return Rate (IRR) of 81,7% and a Net Present Value (NPV) of 60.620.525€ (in 2020).
Resumo:
OBJECTIVE: To assess the prognostic value of Technetium-99m-labeled single-photon emission computerized tomography (SPECT) in the follow-up of patients who had undergone their first myocardial revascularization. METHODS: We carried out a retrospective study of 280 revascularized patients undergoing myocardial scintigraphy under stress (exercise or pharmacological stress with dipyridamole) and at rest according to a 2-day protocol. A set of clinical, stress electrocardiographic and scintigraphic variables was assessed. Cardiac events were classified as "major" (death, infarction, unstable angina) and "any" (major event or coronary angioplasty or new myocardial revascularization surgery). RESULTS: Thirty-six major events occurred as follows: 3 deaths, 11 infarctions, and 22 unstable anginas. In regard to any event, 22 angioplasties and 7 new surgeries occurred in addition to major events, resulting a total of 65 events. The sensitivity of scintigraphy in prognosticating a major event or any event was, respectively, 55% and 58%, showing a negative predictive value of 90% and 83%, respectively. Diabetes mellitus, inconclusive stress electrocardiography, and a scintigraphic visualization of left ventricular enlargement were significant variables for the occurrence of a major event. On multivariate analysis, abnormal myocardial scintigraphy was a predictor of any event. CONCLUSION: Myocardial perfusion tomography with Technetium-99m may be used to identify high-risk patients after their first myocardial revascularization surgery.
Resumo:
Technetium-99m (99mTc) is a radionuclide that has negligible enviromnental impact, is easily available, inexpensive and can be used as a radioactive tracer in biological experiences. In order to know the mode of action of sodium phenobarbital in moving adult Schistosoma mansoni worms from mesenteric veins to the liver, we labelled sodium phenobarbital (PBBT) with 99mTc and a biodistribution study in infected and non-infected Swiss mice was performed. The PBBT was incubated with stannous chloride used as reducing agent and with 99mTc, as sodium pertechnetate. The radioactivity labelling (%) was determined by paper ascending chromatography perfomed with acetone (solvent). The 99mTc-PBBT was administered by intraperitoneal route to Swiss mice infected eight weeks before. The animals were perfused after diferent periods of time (0,1,2,3,4 hr) when blood, spleen, liver, portal vein, mesenteric veins, stomach, kidneys and adult worms were isolated. The radioactivity present in these samples was counted in a well counter and the percentage was determined. The radioactivity was mainly taken up by the blood, kidney, liver and spleen. No radioactivity was found on the adult worms. We concluded that the worm shift was due to an action on the host of the sodium phenobarbital