989 resultados para swine manure
Resumo:
The objective of this work was to evaluate the microbiological and chemical attributes of a soil with a seven‑year history of urea and swine manure application. In the period from October 2008 to October 2009, soil samples were collected in the 0-10 cm layer and were subjected to the treatments: control, without application of urea or manure; and with the application of urea, pig slurry, and deep pig litter in two doses, in order to supply one or two times the recommended N doses for the maize (Zea mays)/black oat (Avena strigosa) crop succession. The carbon of the microbial biomass (MB‑C) and the basal respiration (C‑CO2) were analyzed, and the metabolic (qCO2) and microbial quotient (qmic) were calculated with the obtained data. Organic matter, pH in water, available P and K, and exchangeable Ca and Mg were also determined. The application of twice the dose of deep pig litter increases the MB‑C and C‑CO2 values. The qmic and qCO2 are little affected by the application of swine manure. The application of twice the dose of deep pig litter increases the values of pH in water and the contents of available P and of exchangeable Ca and Mg in the soil.
Resumo:
The objective of this research was to study the influence of factors related to the proper management of pig manure (lower dilution) and the season of the year in the progress of the co-composting of pig manure with wood shavings and in the final quality of the compost resulting from the treatments. In the first experiment, two types of swine manure were used: a diluted one (2% Dry Matter - DM), typical from the management usually used in Brazil, and a more concentrated one (6% DM). The manures were incorporated into the wood shavings (6L:1kg) over the course of four weeks. The development of composting was accompanied by monitoring of temperatures inside the piles and the emission of CO2 and CH4 gases during 65 days, including the period of incorporation. The results showed that the diluted manure does not provide the minimum conditions for starting the process. After the incorporation period, any biomass heating was observed and neither the aerobic or anaerobic respiration of the microorganisms, resulting in a compost with low quality. In the second experiment, which evaluated composting in winter and summer during 85 days, it was found that the heat exchange with the environment influences the temperature generated within the piles. The lower temperatures significantly reduced the methanogenesis on the biomass.
Resumo:
Swine manure agricultural use is a common practice in Brazil. Their physic-chemical characteristics favor its use as biofertilizer, but the presence of pathogens may become a risk to human health. This research presents a qualitative study of the main alternatives of pig manure disinfection, analyzing efficiency, advantages and limitations of each procedure. The disinfection studies reported in literature are based on the following treatments: alkaline, thermal, biological, chemical, and physical. The greater efficiencies are in thermal treatment (> 4 log: 60 °C), chemical treatment (3 to 4 log: 30mg Cl- L-1; 3 to 4 log: 40 mg O3 L-1) and physical treatment (3 a 4 log: 220 mJ UV radiation cm-2). The biological treatment (anaerobiosis) also promotes the pathogen reduction of swine manure, however with lower efficiency (1 to 2 log). The selection of the treatment should consider: implementation and operation cost, necessity of preliminary treatment, efficiency obtained and destination of the treated manure (agricultural use, water reuse). Brazilian regulation does not have specific guidelines for the microbiological quality of animal production effluents that is very important to be considered due to confined animal feeding operation transformation in the last years in the country.
Resumo:
In this study, was studied the biogas generation from swine manure, using residual glycerine supplementation. The biogas production by digestion occurred in the anaerobic batch system under mesophilic conditions (35°C), with a hydraulic retention time of 48 days. The experiment was performed with 48 samples divided into four groups, from these, one was kept as a control (without glycerin) and the other three groups were respectively supplemented with residual glycerine in the percentage of 3%, 6% and 9% of the total volume of the samples. The volume of biogas was controlled by an automated system for reading in laboratory scale and the quality of the biogas (CH4) measured from a specific sensor. The results showed that the residual glycerine has high potential for biogas production, with increases of 124.95%, 156.98% and 197.83% in the groups 3%, 6% and 9%, respectively, relative to the sample control. However, very high organic loads can compromise the process of digestion affecting the quality of the biogas generated in relation to methane.
Resumo:
Four Gram-positive-staining, strictly anaerobic, non-spore-forming, rod-shaped organisms were isolated from a pig manure storage pit. Comparative 16S rRNA gene sequence analysis revealed that the isolates belonged to two related but distinct groups. Sequence analysis showed that the two groups of isolates were highly related to each other (approx. 97% 16S rRNA gene sequence similarity), forming a distinct cluster within the Clostridium coccoides suprageneric rDNA grouping. Biochemical and physiological studies confirmed the division of the isolates into two related, albeit distinct, groups. Based on both phenotypic and phylogenetic evidence, it is proposed that the unidentified rod-shaped isolates from pig manure should be classified in a novel genus, Hespellia gen. nov., as Hespellia stercorisuis sp. nov. and Hespellia porcina sp. nov. The type species of the novel genus is H. stercorisuis (type strain, PC18(T) = NRRL B-23456(T) = CCUG 46279(T) = ATCC BAA-677(T)) and the type strain of H. porcina is PC80(T) (= NRRL B-23458(T) = ATCC BAA-674(T)).
Resumo:
Two Gram-negative, anaerobic, non-spore-forming, rod-shaped organisms were isolated from a swine-manure storage pit. Based on morphological and biochemical criteria, the strains were tentatively identified as belonging to the genus Bacteroides but they did not appear to correspond to any recognized species of the genus. Comparative 16S rRNA gene sequencing studies showed that the strains were related closely to each other and confirmed their placement in the genus Bacteroides, but sequence divergence values of > 10% from reference Bacteroides species demonstrated that the organisms from manure represent a novel species. Based on biochemical criteria and molecular genetic evidence, it is proposed that the unknown isolates from manure be assigned to a novel species of the genus Bacteroides, as Bacteroides coprosuis sp. nov. The type strain is PC139(T) (=CCUG 50528(T)=NRRL B-41113(T)).
Resumo:
Phenotypic and molecular genetic studies were performed on an unknown facultative anaerobic, catalase-negative, non-spore-forming, rod-shaped bacterium isolated from a pig manure storage pit. The unknown bacterium was nutritionally fastidious with growth enhanced by the addition of rumen fluid and was phenotypically initially identified as an Eubacterium species. Comparative 16S rRNA gene sequencing studies, however, revealed that the unknown bacterium was phylogenetically distant from Eubacterium limosum (the type species of the genus Eubacterium) and related organisms. Phylogenetically, the unknown species displayed a close association with an uncultured organism from human subgingival plaque and formed an unknown sub-line within a cluster of organisms which includes Alloioccoccus otitis, Alkalibacterium olivoapovliticus, Allofustis seminis, Dolosigranulum pigrum, and related organisms, within the low mol% G + C Gram-positive bacteria. Sequence divergence values of > 8% with all known taxonomically recognised taxa, however, clearly indicates the novel bacterium represents a hitherto unknown genus. Based on both phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium from pig manure be classified in a new genus and species, as Atopostipes suicloacale gen. nov., sp. nov. The type strain of Atopostipes suicloacale is PPC79(T) = NRRL 23919(T) = DSM 15692(T). Crown Copyright (C) 2004 Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Swine manure and fertilizer can be used to supply the nitrogen (N) and phosphorus (P) needs of crops. Excess P application sometimes applied with N-based manure for corn increases the risk of P loss and water quality impairment. Poor water quality in Iowa streams and lakes due to excess P has prompted questions about the impact of cropping and nutrient management systems on P loss from fields.
Resumo:
The primary objective of this project was to determine the impact of appropriate rates of swine manure applications to corn and soybeans based on nitrogen and phosphorus requirements of crops, soil phosphorus accumulation, and the potential of nitrate and phosphorus leaching to groundwater. Another purpose of this long-term experimental study was to develop and recommend appropriate manure and nutrient management practices to producers to minimize the water contamination potential and enhance the use of swine manure as inorganic fertilizer. A third component of this study was to determine the potential effects of rye as a cover crop to reduce nitrate loss to shallow ground water.
Resumo:
Since hog raising concentrates a huge amount of swine manure in small areas, it is considered by the environmental government organizations to be one of the most potentially pollutant activities. Therefore the main objective of this research was to evaluate by operational criteria and removal efficiency, the performance of a Anaerobic Baffled Reactor (ABR), working as a biological pre-treatment of swine culture effluents. The physical-chemical analyses carried out were: total COD, BOD(5), total solids (TS), fix (TFS) and volatiles (TVS), temperature, pH, total Kjeldahl nitrogen, phosphorus, total acidity and alkalinity. The ABR unit worked with an average efficiency of 65.2 and 76.2%, respectively, concerning total COD and BOD(5), with a hydraulic retention time (HRT) about 15 hours. The results for volumetric organic loading rate (VOLR), organic loading rate (OLR) and hydraulic loading rate (HLR) were: 4.46 kg BOD m(-3) day(-1); 1.81 kg BOD(5) kg TVS(-1) day(-1) and 1.57 m(3) m(-3) day(-1), respectively. The average efficiency of the whole treatment system for total COD and BOD(5) removal were 66.5 and 77.8%, showing an adequate performance in removing die organic matter from swine wastewater.
Resumo:
Successive applications of pig litter to the soil surface can increase the phosphorus (P) content and alter its adsorption, promoting P transfer to surface or subsurface waters. The purpose of this study was to evaluate P accumulation and the pollution potential of a soil after application of pig litter. In March 2010, eight years after the installation of an experiment in Braço do Norte, Santa Catarina, SC, Brazil, on a Typic Hapludult, soil was sampled (layers 0-2.5, 2.5-5, 5-10, 10-15, 15-20 and 20-30 cm) after the following fertilization treatments: no pig litter fertilization, pig slurry application and pig manure application. In this period, 694 and 1,890 kg P2O5 ha-1 were applied in the treatments with pig slurry and pig manure, respectively. The P content was determined, based on Mehlich-1, anion exchange resin (AER), 0.01 mol L-1 CaCl2 and total P in the samples. The adsorption isotherm parameters were also determined by the Langmuir and Koski-Vähälä & Hartikainem models in the layers 0-2.5 and 20-30 cm. The application of 1,890 kg P2O5 ha-1 in the form of pig manure led to P accumulation, as evidenced by Mehlich-1, down to a depth of 15 cm, by AER and 0.01 mol L-1 CaCl2 down to 20 cm and by total P to 30 cm. After application of 1,890 kg P2O5 ha-1 in the form of pig manure, the values of maximum P adsorption capacity were lowest in the deepest layer (20-30 cm), indicating the occupation of part of the adsorption sites of the particles. The application of swine manure to the soil over eight years increased the P quantity in the soil solution of the surface layer, indicating environmental contamination risk for surface and subsurface waters.
Resumo:
Phosphate release kinetics from manures are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Although information on the bioavailability and chemical composition of P present in manure used as fertilizer are important to understand its dynamics in the soil, such studies are still scarce. Therefore, P extraction was evaluated in this study by sequential chemical fractionation, desorption with anion-cation exchange resin and 31P nuclear magnetic resonance (31P-NMR) spectroscopy to assess the P forms in three different dry manure types (i.e. poultry, cattle and swine manure). All three methods showed that the P forms in poultry, cattle and swine dry manures are mostly inorganic and highly bioavailable. The estimated P pools showed that organic and recalcitrant P forms were negligible and highly dependent on the Ca:P ratio in manures. The results obtained here showed that the extraction of P with these three different methods allows a better understanding and complete characterization of the P pools present in the manures.
Resumo:
The industrial swine production is characterized by generation of significant effluent amounts that require treatment. The most adopted practices by Brazilian swine farmers have been wastewater storage in lagoons and its subsequent use as a biofertilizer. Nutrient accumulation in soil and water creates the need for an effective management of these residues. The anaerobic digestion process is an important alternative and low-cost treatment for organic matter reduction. However, its efficiency is limited by the digester capacity of solid degradation, especially at low hydraulic retention times. Thus, the present study aimed to verify the behavior of an upflow anaerobic digester by increasing the organic loading rate. This was accomplished in three stages using, as a parameter, volatile solids at 0.5; 1.0 and 1.5 kgVS m-3 d-1, respectively. This digester model proved to be quite robust and effective in swine manure treatment, achieving high efficiency of volatile solid removal at all stages of the study (stage 1: 61.38%; stage 2: 55.18%; and stage 3: 43.18%). Biogas production was directly related to the increasing organic load, reaching 0.14, 0.85, and 0.86 Nm³ kgVS-1add., respectively, with no significant difference (p<0.05) of biogas methane concentration among the studied stages (73.7, 75.0, and 77.9%).
Resumo:
The ability of a soil to keep its structure under the erosive action of water is usually high in natural conditions and decreases under frequent and intensive cultivation. The effect of five tillage systems (NT = no-till; CP = chisel plowing and one secondary disking; CT = primary and two secondary distings; CTb = CT with crop residue burning; and CTr = CT with removal of crop residues from the field), combined with five nutrient sources (C = control, no nutrient application; MF = mineral fertilizers according to technical recommendations for each crop; PL = 5 Mg ha-1 y-1 fresh matter of poultry litter; CM = 60 m³ ha-1 y-1 slurry cattle manure; and SM = 40 m³ ha-1 y-1 slurry swine manure) on wet-aggregate stability was determined after nine years (four sampled soil layers) and on five sampling dates in the 10th year (two sampled soil layers) of the experiment. The size distribution of the air-dried aggregates was strongly affected by soil bulk density, and greater values of geometric mean diameter (GMD AD) found in some soil tillage or layer may be partly due to the higher compaction degree. After nine years, the GMD AD on the surface was greater in NT and CP compared to conventional tillage systems (CT, CTb and CTr), due to the higher organic matter content, as well as less soil mobilization. Aggregate stability in water, on the other hand, was affected by the low variation in previous gravimetric moisture of aggregates, which contributed to a high coefficient of variation of this attribute. The geometric mean diameter of water-stable aggregates (GMD WS) was highest in the 0.00-0.05 m layer in the NT system, in the layers 0.05-0.10 and 0.12-0.17 m in the CT, and values were intermediate in CP. The stability index (SI) in the surface layers was greater in treatments where crop residues were kept in the field (NT, CP and CT), which is associated with soil organic matter content. No differences were found in the layer 0.27-0.32 m. The effect of nutrient sources on GMD AD and GMD WS was small and did not affect SI.