990 resultados para structural geology
Resumo:
This contribution outlines Synchrotron-based X-ray micro-tomography and its potential use in structural geology and rock mechanics. The paper complements several recent reviews of X-ray microtomography. We summarize the general approach to data acquisition, post-processing as well as analysis and thereby aim to provide an entry point for the interested reader. The paper includes tables listing relevant beamlines, a list of all available imaging techniques, and available free and commercial software packages for data visualization and quantification. We highlight potential applications in a review of relevant literature including time-resolved experiments and digital rock physics. The paper concludes with a report on ongoing developments and upgrades at synchrotron facilities to frame the future possibilities for imaging sub-second processes in centimetre-sized samples.
Resumo:
An area of about 25 square miles in the western part of the San Gabriel Mountains was mapped on a scale of 1000 feet to the inch. Special attention was given to the structural geology, particularly the relations between the different systems of faults, of which the San Gabriel fault system and the Sierra Madre fault system are the most important ones. The present distribution and relations of the rocks suggests that the southern block has tilted northward against a more stable mass of old rocks which was raised up during a Pliocene or post-Pliocene orogeny. It is suggested that this northward tilting of the block resulted in the group of thrust faults which comprise the Sierra Madre fault system. It is show that this hypothesis fits the present distribution of the rocks and occupies a logical place in the geologic history of the region as well or better than any other hypothesis previously offered to explain the geology of the region.
Resumo:
"Planned especially to meet the needs of the students in Geology 4 at Harvard University."--Pref.
Resumo:
Includes index.
Resumo:
The authors wish to acknowledge the generous financial support provided in association with this volume to the Geological Society and the Petroleum Group by Badley Geoscience Ltd, BP, CGG Robertson, Dana Petroleum Ltd, Getech Group plc, Maersk Oil North Sea UK Ltd, Midland Valley Exploration Ltd, Rock Deformation Research (Schlumberger) and Borehole Image & Core Specialists (Wildcat Geoscience, Walker Geoscience and Prolog Geoscience). We would like to thank the fine team at the Geological Society’s Publishing House for the excellent support and encouragement that they have provided to the editors and authors of this Special Publication.
Resumo:
The authors wish to acknowledge the generous financial support provided in association with this volume to the Geological Society and the Petroleum Group by Badley Geoscience Ltd, BP, CGG Robertson, Dana Petroleum Ltd, Getech Group plc, Maersk Oil North Sea UK Ltd, Midland Valley Exploration Ltd, Rock Deformation Research (Schlumberger) and Borehole Image & Core Specialists (Wildcat Geoscience, Walker Geoscience and Prolog Geoscience). We would like to thank the fine team at the Geological Society’s Publishing House for the excellent support and encouragement that they have provided to the editors and authors of this Special Publication.
Resumo:
The map representation of an environment should be selected based on its intended application. For example, a geometrically accurate map describing the Euclidean space of an environment is not necessarily the best choice if only a small subset its features are required. One possible subset is the orientations of the flat surfaces in the environment, represented by a special parameterization of normal vectors called axes. Devoid of positional information, the entries of an axis map form a non-injective relationship with the flat surfaces in the environment, which results in physically distinct flat surfaces being represented by a single axis. This drastically reduces the complexity of the map, but retains important information about the environment that can be used in meaningful applications in both two and three dimensions. This thesis presents axis mapping, which is an algorithm that accurately and automatically estimates an axis map of an environment based on sensor measurements collected by a mobile platform. Furthermore, two major applications of axis maps are developed and implemented. First, the LiDAR compass is a heading estimation algorithm that compares measurements of axes with an axis map of the environment. Pairing the LiDAR compass with simple translation measurements forms the basis for an accurate two-dimensional localization algorithm. It is shown that this algorithm eliminates the growth of heading error in both indoor and outdoor environments, resulting in accurate localization over long distances. Second, in the context of geotechnical engineering, a three-dimensional axis map is called a stereonet, which is used as a tool to examine the strength and stability of a rock face. Axis mapping provides a novel approach to create accurate stereonets safely, rapidly, and inexpensively compared to established methods. The non-injective property of axis maps is leveraged to probabilistically describe the relationships between non-sequential measurements of the rock face. The automatic estimation of stereonets was tested in three separate outdoor environments. It is shown that axis mapping can accurately estimate stereonets while improving safety, requiring significantly less time and effort, and lowering costs compared to traditional and current state-of-the-art approaches.
Resumo:
3DMove software, based on the three-dimension structural model of geologic interpretation, can forecast reservoir cracks from the point of view of formation of the structural geology, and analyze the characteristics of the cracks. 3DMove software dominates in forecasting cracks. We forecast the developments and directions of the cracks in Chengbei buried hill with the application of forecasting technique in 3DMove software, and obtain the chart about strain distributing on top in buried hill and the chart about relative density and orientation and the chart about the analysis of crack unsealing. In Chengbei 30 buried hill zone, north-west and north-east and approximately east-west cracks in Cenozoic are very rich and the main directions in every fault block are different. Forecasting results that are also verified by those of drilling approximately accord with the data from well logging, the case of which shows that the technique has the better ability in forecasting cracks, and takes more effects on exploration and exploitation of crack reservoir beds in ancient buried hill reservoirs.
Resumo:
Structures related to ductile siMple shear parallel to the Bankf ield-Tonbill Fault, define a 5km wide zone, the Barton Bay Deformation Zone. Structures present within this zone Include; simple shear fabrics S, C and C , asymmetric Z shaped folds with rotated axes, boudinage and pinch and swell structures and a subhorlzontal extension llneation. The most highly deformed rock is a gabbro mylonite which occurs in the fault zone. The deformation of this gabbro has been traced in stages from a protomylonite to an ultramylonite In which feldspar and chlorite grainslze has been reduced from over 100 microns to as little as 5 microns. Evidence from the mylonite and the surrounding structure indicates that deformation within the Barton Bay Deformation Zone is related to a regional simple shear zone, the Bankf ield-Tombill Fault. Movement along this shear zone was in a south over north oblique strike slip fashion with a dextral sense of displacement.
Resumo:
The Paint Lake Deformation Zone (PLDZ), located within the Superior Province of Canada, demarcates a major structural and lithological break between the Onaman-Tashota Terrane to the north and the Beardmore-Geraldton Belt to the south. The PLDZ is an east-west trending lineament, approximately 50 km in length and up to 1 km in width, comprised of an early ductile component termed the Paint Lake Shear Zone and a late brittle component known as the Paint Lake Fault. Structures associated with PLDZ development including S-, C- and C'-fabrics, stretching lineations, slickensides, C-C' intersection lineations, Z-folds and kinkbands indicate that simple shear deformation dominated during a NW-SE compressional event. Movement along the PLDZ was in a dextral sense consisting of an early differential motion with southside- down and a later strike-slip motion. Although the locus of the PLDZ may in part be lithologically controlled, mylonitization which accompanied shear zone development is not dependent on the lithological type. Conglomerate, intermediate and mafic volcanic units exhibit similar mesoscopic and microscopic structures where transected by the PLDZ. Field mapping, supported by thin section analysis, defines five strain domains increasing in intensity of deformation from shear zone boundary to centre. A change in the dominant microstructural deformation mechanism from dislocation creep to diffusion creep is observed with increasing strain during mylonitization. C'-fabric development is temporally associated with this change. A decrease in the angular relationship between C- and C'-fabrics is observed upon attaining maximum strain intensity. Strain profiling of the PLDZ demonstrates the presence of an outer primary strain gradient which exhibits a simple profile and an inner secondary strain gradient which exhibits a more complex profile. Regionally metamorphosed lithologies of lower greenschist facies outside the PLDZ were subjected to retrograde metamorphism during deformation within the PLDZ.
Resumo:
The Horwood Peninsula - Gander Bay area is located at NE Newfoundland in the Botwood Zone (Williams et a1., 1974) or in the Dunnage Zone (Williams, 1979) of the Central Mobile Belt of the Newfoundland Appalachians. The area is underlain by Middle Ordovician to possible Lower Silurian rocks of the Davidsville and Indian Islands Groups, respectively. Three conformable formations named informally : the Mafic Volcanic Formation, the Greywacke and Siltstone Formation and the Black Slate Formation, have been recognized in the Davidsville Group. The Greywacke and the Black Slate Formations pass locally into a Melange Formation. From consideration of regional structure and abundant locally-derived mafic volcanic olisto- 1iths in the melange, it is considered to have originated by gravity sliding rather than thrusting. Four formations have been recognized in the Indian Islands Group. They mainly contain silty slate and phyllite, grey cherty siltstone, green to red micaceous siltstone and limestone horizons. Repetition of lithological units by F1 folding are well-demonstrated in one of formations in this Group. The major structure in this Group on the Horwood Peninsula is interpreted to be a synclinal complex. The lithology of this Group is different from the Botwood Group to the west and is probably Late Ordovician and/or Early Silurian in age. The effects of soft-sediment deformation can be seen from the lower part of the Davidsville Group to the middle part of the Indian Islands Group indicating continuous and/or episodic slumping and sliding activities throughout the whole area. However, no siginificant depOSitional and tectonic break that could be assigned to the Taconian Orogeny has been recognized in this study. Three periods of tectonic deformation were produced by the Acadian Orogeny. Double boudinage in thin dikes indicates a southeast-northwest sub-horizontal compression and main northeast-southwest sub-horizontal extension during the D1 deformation. A penetrative, axial planar slaty cleavage (Sl) and tight to isocJ.ina1 F1 folds are products of this deformation. The D2 and D3 deformations formed S2 and S3 fabrics associated with crenulations and kink bands which are well-shown in the slates and phyllites of the Indian Islands Group. The D2 and D3 deformations are the products of vertical and northeast-southwest horizontal shortening respectively. The inferred fault between the Ordovician slates (Davidsville Group) and the siltstones (Indian Islands Group) suggested by Williams (1963, 1964b, 1972, 1978) is absent. Formations can be followed without displacement across this inferred fault. Chemically, the pillow lavas, mafic agglomerates, tuff beds and diabase dikes are subdivided into three rock suites : (a) basaltic komatiite (Beaver Cove Assemblage), (b) tholeiitic basalt (diabase dikes), (c) alkaline basalt (Shoal Bay Assemblage). The high Ti02 , MgO, Ni contents and bimodal characteristic of the basaltic komatiite in the area are comparable to the Svartenhuk Peninsula at Baffin Bay and are interpreted to be the result of an abortive volcano-tectonic rift-zone in a rear-arc basin. Modal and chemical analyses of greywackes and siltstones show the trend of maturity of these rocks increasing from poorly sorted Ordovician greywackes to fairly well-sorted Silurian siltstones. Rock fragments in greywackes indicate source areas consisting of plagiogranite, low grade metamorphic rocks and ultramafic rocks. Rare sedimentary structures in both Groups indicate a southeasterly provenance. Trace element analyses of greywackes also reveal a possible island-arc affinity.
Resumo:
Peer reviewed
Resumo:
Each part has special t.p. and separate paging.