977 resultados para structural elements
Resumo:
Includes bibliography
Resumo:
This study deals with the reduction of the stiffness in precast concrete structural elements of multi-storey buildings to analyze global stability. Having reviewed the technical literature, this paper present indications of stiffness reduction in different codes, standards, and recommendations and compare these to the values found in the present study. The structural model analyzed in this study was constructed with finite elements using ANSYS® software. Physical Non-Linearity (PNL) was considered in relation to the diagrams M x N x 1/r, and Geometric Non-Linearity (GNL) was calculated following the Newton-Raphson method. Using a typical precast concrete structure with multiple floors and a semi-rigid beam-to-column connection, expressions for a stiffness reduction coefficient are presented. The main conclusions of the study are as follows: the reduction coefficients obtained from the diagram M x N x 1/r differ from standards that use a simplified consideration of PNL; the stiffness reduction coefficient for columns in the arrangements analyzed were approximately 0.5 to 0.6; and the variation of values found for stiffness reduction coefficient in concrete beams, which were subjected to the effects of creep with linear coefficients from 0 to 3, ranged from 0.45 to 0.2 for positive bending moments and 0.3 to 0.2 for negative bending moments.
Resumo:
The present work evaluates imperfections of precast concrete elements that do not meet the quality intended in design, gives rules and possible evaluation systems and offers recomendations for prevention, the effect the imperfections can have and actions for rectification. At last, the document should be read in conjunction with relevant codes and standards.
Resumo:
This work focuses on the analysis of a structural element of MetOP-A satellite. Given the special interest in the influence of equipment installed on structural elements, the paper studies one of the lateral faces on which the Advanced SCATterometer (ASCAT) is installed. The work is oriented towards the modal characterization of the specimen, describing the experimental set-up and the application of results to the development of a Finite Element Method (FEM) model to study the vibro-acoustic response. For the high frequency range, characterized by a high modal density, a Statistical Energy Analysis (SEA) model is considered, and the FEM model is used when modal density is low. The methodology for developing the SEA model and a compound FEM and Boundary Element Method (BEM) model to provide continuity in the medium frequency range is presented, as well as the necessary updating, characterization and coupling between models required to achieve numerical models that match experimental results.
Resumo:
Este trabajo analiza distintas inestabilidades en estructuras formadas por distintos materiales. En particular, se capturan y se modelan las inestabilidades usando el método de Riks. Inicialmente, se analiza la bifurcación en depósitos cilíndricos formados por material anisótropo sometidos a carga axial y presión interna. El análisis de bifurcación y post-bifurcación asociados con cilindros de pared gruesa se formula para un material incompresible reforzado con dos fibras que son mecánicamente equivalentes y están dispuestas simétricamente. Consideramos dos casos en la naturaleza de la anisotropía: (i) Fibras refuerzo que tienen una influencia particular sobre la respuesta a cortante del material y (ii) Fibras refuerzo que influyen sólo si la fibra cambia de longitud con la deformación. Se analiza la propagación de las inestabilidades. En concreto, se diferencia en el abultamiento (bulging) entre la propagación axial y la propagación radial de la inestabilidad. Distintos modelos sufren una u otra propagación. Por último, distintas inestabilidades asociadas al mecanismo de ablandamiento del material (material softening) en contraposición al de endurecimiento (hardening) en una estructura (viga) de a: hormigón y b: hormigón reforzado son modeladas utilizando una metodología paralela a la desarrollada en el análisis de inestabilidades en tubos sometidos a presión interna. This present work deals with the instability of structures made of various materials. It captures and models different types of instabilities using numerical analysis. Firstly, we consider bifurcation for anisotropic cylindrical shells subject to axial loading and internal pressure. Analysis of bifurcation and post bifurcation of inflated hyperelastic thick-walled cylinder is formulated using a numerical procedure based on the modified Riks method for an incompressible material with two preferred directions which are mechanically equivalent and are symmetrically disposed. Secondly, bulging/necking motion in doubly fiber-reinforced incompressible nonlinearly elastic cylindrical shells is captured and we consider two cases for the nature of the anisotropy: (i) reinforcing models that have a particular influence on the shear response of the material and (ii) reinforcing models that depend only on the stretch in the fiber direction. The different instability motions are considered. Axial propagation of the bulging instability mode in thin-walled cylinders under inflation is analyzed. We present the analytical solution for this particular motion as well as for radial expansion during bulging evolution. For illustration, cylinders that are made of either isotropic incompressible non-linearly elastic materials or doubly fiber reinforced incompressible non-linearly elastic materials are considered. Finally, strain-softening constitutive models are considered to analyze two concrete structures: a reinforced concrete beam and an unreinforced notch beam. The bifurcation point is captured using the Riks method used previously to analyze bifurcation of a pressurized cylinder.
Resumo:
The database, called HyPaLib (for Hybrid Pattern Library), contains annotated structural elements characteristic for certain classes of structural and/or functional RNAs. These elements are described in a language specifically designed for this purpose. The language allows convenient specification of hybrid patterns, i.e. motifs consisting of sequence features and structural elements together with sequence similarity and thermodynamic constraints. We are currently developing software tools that allow a user to search sequence databases for any pattern in HyPaLib, thus providing functionality which is similar to PROSITE, but dedicated to the more complex patterns in RNA sequences. HyPaLib is available at http://bibiserv.techfak.uni-bielefeld.de/HyPa/.
Resumo:
PCR amplification of template DNAs extracted from mixed, naturally occurring microbial populations, using oligonucleotide primers complementary to highly conserved sequences, was used to obtain a large collection of diverse RNase P RNA-encoding genes. An alignment of these sequences was used in a comparative analysis of RNase P RNA secondary and tertiary structure. The new sequences confirm the secondary structure model based on sequences from cultivated organisms (with minor alterations in helices P12 and P18), providing additional support for nearly every base pair. Analysis of sequence covariation using the entire RNase P RNA data set reveals elements of tertiary structure in the RNA; the third nucleotides (underlined) of the GNRA tetraloops L14 and L18 are seen to interact with adjacent Watson-Crick base pairs in helix P8, forming A:G/C or G:A/U base triples. These experiments demonstrate one way in which the enormous diversity of natural microbial populations can be used to elucidate molecular structure through comparative analysis.
Resumo:
In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.
Resumo:
Includes index.
Resumo:
Pyrrhacoricin is a naturally occurring antimicrobial peptide from the European fire bug Pyrrhocoris apterus. It has submicromolar activity against a range of Gram-negative bacterial strains and has created recent interest as a lead for the development of novel antibiotic compounds. In this study, we have used NMR spectroscopy to determine the solution structures of pyrrhocoricin and a synthetic macrocyclic derivative that has improved in vivo pharmaceutical properties. Native pyrrhocoricin is largely disordered in solution, but there is evidence of a subpopulation with ordered turn regions over residues 2-5, 4-7, and 16-19. The macrocyclic derivative incorporates a nine amino acid linker joining the N- and C-termini, which does not adversely affect the antimicrobial potency but leads to a broader spectrum of activity. The NMR data suggest that the turn conformations in the cyclic derivative are similar to those in the native form, thus implicating them in the biological function. (C) 2004 Wiley Periodicals, Inc.
Resumo:
This PhD dissertation presents a profound study of the vulnerability of buildings and non-structural elements stemming from the investigation of the Mw 5.2 Lorca 2011 earthquake; which constitutes one of the most significant earthquakes in Spain. It left nine fatalities due to falling debris from reinforced concrete buildings, 394 injured and material damage valued at 800 million euros. Within this framework, the most relevant initiatives concerning the vulnerability of buildings and the exposure of Lorca are studied. This work revealed two lines of research: the elaboration of a rational method to determine the adequacy of a specific fragility curve for the particular seismic risk study of a region; and the relevance of researching the seismic performance of non-structural elements. As a consequence, firstly, a method to assess and select fragility curves for seismic risk studies from the catalogue of those available in the literature is elaborated and calibrated by means of a case study. The said methodology is based on a multidimensional index and provides a ranking that classifies the curves in terms of adequacy. Its results for the case of Lorca led to the elaboration of new fragility curves for unreinforced masonry buildings. Moreover, a simplified method to account for the unpredictable directionality of the seism in the creation of fragility curves is contributed. Secondly, the characterisation of the seismic capacity and demand of the non-structural elements that caused most of the human losses is studied. Concerning the capacity, an analytical approach derived from theoretical considerations to characterise the complete out-of-plane seismic response curve of unreinforced masonry cantilever walls is provided; as well as a simplified and more practical trilinear version of it. Concerning the demand, several methods for characterising the Floor Response Spectra of reinforced concrete buildings are tested through case studies.
Resumo:
Inaccurate wiring and synaptic pathology appear to be major hallmarks of schizophrenia. A variety of gene products involved in synaptic neurotransmission and receptor signaling are differentially expressed in brains of schizophrenia patients. However, synaptic pathology may also develop by improper expression of intra- and extra-cellular structural elements weakening synaptic stability. Therefore, we have investigated transcription of these elements in the left superior temporal gyrus of 10 schizophrenia patients and 10 healthy controls by genome-wide microarrays (Illumina). Fourteen up-regulated and 22 downregulated genes encoding structural elements were chosen from the lists of differentially regulated genes for further qRT-PCR analysis. Almost all genes confirmed by this method were downregulated. Their gene products belonged to vesicle-associated proteins, that is, synaptotagmin 6 and syntaxin 12, to cytoskeletal proteins, like myosin 6, pleckstrin, or to proteins of the extracellular matrix, such as collagens, or laminin C3. Our results underline the pivotal roles of structural genes that control formation and stabilization of pre- and post-synaptic elements or influence axon guidance in schizophrenia. The glial origin of collagen or laminin highlights the close interrelationship between neurons and glial cells in establishment and maintenance of synaptic strength and plasticity. It is hypothesized that abnormal expression of these and related genes has a major impact on the pathophysiology of schizophrenia.
Resumo:
This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.
Resumo:
The olfactory system of Drosophila has become an attractive and simple model to investigate olfaction because it follows the same organizational principles of vertebrates, and the results can be directly applied to other insects with economic and sanitary relevance. Here, we review the structural elements of the Drosophila olfactory reception organs at the level of the cells and molecules involved. This article is intended to reflect the structural basis underlying the functional variability of the detection of an olfactory universe composed of thousands of odors. At the genetic level, we further detail the genes and transcription factors (TF) that determine the structural variability. The fly's olfactory receptor organs are the third antennal segments and the maxillary palps, which are covered with sensory hairs called sensilla. These sensilla house the odorant receptor neurons (ORNs) that express one or few odorant receptors in a stereotyped pattern regulated by combinations of TF. Also, perireceptor events, such as odor molecules transport to their receptors, are carried out by odorant binding proteins. In addition, the rapid odorant inactivation to preclude saturation of the system occurs by biotransformation and detoxification enzymes. These additional events take place in the lymph that surrounds the ORNs. We include some data on ionotropic and metabotropic olfactory transduction, although this issue is still under debate in Drosophila.