980 resultados para stochastic load factor
Resumo:
This paper investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.
Resumo:
This presentation investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.
Resumo:
This paper investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.
Asymmetry Risk, State Variables and Stochastic Discount Factor Specification in Asset Pricing Models
Resumo:
Using the Pricing Equation in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) which relies on the fact that its logarithm is the serial-correlation ìcommon featureîin every asset return of the economy. Our estimator is a simple function of asset returns, does not depend on any parametric function representing preferences, is suitable for testing di§erent preference speciÖcations or investigating intertemporal substitution puzzles, and can be a basis to construct an estimator of the risk-free rate. For post-war data, our estimator is close to unity most of the time, yielding an average annual real discount rate of 2.46%. In formal testing, we cannot reject standard preference speciÖcations used in the literature and estimates of the relative risk-aversion coe¢ cient are between 1 and 2, and statistically equal to unity. Using our SDF estimator, we found little signs of the equity-premium puzzle for the U.S.
Resumo:
Using the Pricing Equation, in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) mimicking portfolio which relies on the fact that its logarithm is the ìcommon featureîin every asset return of the economy. Our estimator is a simple function of asset returns and does not depend on any parametric function representing preferences, making it suitable for testing di§erent preference speciÖcations or investigating intertemporal substitution puzzles.
Resumo:
Using the Pricing Equation in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) which relies on the fact that its logarithm is the "common feature" in every asset return of the economy. Our estimator is a simple function of asset returns and does not depend on any parametric function representing preferences. The techniques discussed in this paper were applied to two relevant issues in macroeconomics and finance: the first asks what type of parametric preference-representation could be validated by asset-return data, and the second asks whether or not our SDF estimator can price returns in an out-of-sample forecasting exercise. In formal testing, we cannot reject standard preference specifications used in the macro/finance literature. Estimates of the relative risk-aversion coefficient are between 1 and 2, and statistically equal to unity. We also show that our SDF proxy can price reasonably well the returns of stocks with a higher capitalization level, whereas it shows some difficulty in pricing stocks with a lower level of capitalization.
Resumo:
We aim to provide a review of the stochastic discount factor bounds usually applied to diagnose asset pricing models. In particular, we mainly discuss the bounds used to analyze the disaster model of Barro (2006). Our attention is focused in this disaster model since the stochastic discount factor bounds that are applied to study the performance of disaster models usually consider the approach of Barro (2006). We first present the entropy bounds that provide a diagnosis of the analyzed disaster model which are the methods of Almeida and Garcia (2012, 2016); Ghosh et al. (2016). Then, we discuss how their results according to the disaster model are related to each other and also present the findings of other methodologies that are similar to these bounds but provide different evidence about the performance of the framework developed by Barro (2006).
Resumo:
27 p.
Resumo:
This paper investigates stochastic analysis of transit segment hourly passenger load factor variation for transit capacity and quality of service (QoS) analysis using Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia. It compares stochastic analysis to traditional peak hour factor (PHF) analysis to gain further insight into variability of transit route segments’ passenger loading during a study hour. It demonstrates that hourly design load factor is a useful method of modeling a route segment’s capacity and QoS time history across the study weekday. This analysis method is readily adaptable to different passenger load standards by adjusting design percentile, reflecting either a more relaxed or more stringent condition. This paper also considers hourly coefficient of variation of load factor as a capacity and QoS assessment measure, in particular through its relationships with hourly average and design load factors. Smaller value reflects uniform passenger loading, which is generally indicative of well dispersed passenger boarding demands and good schedule maintenance. Conversely, higher value may be indicative of pulsed or uneven passenger boarding demands, poor schedule maintenance, and/or bus bunching. An assessment table based on hourly coefficient of variation of load factor is developed and applied to this case study. Inferences are drawn for a selection of study hours across the weekday studied.
Resumo:
This study uses weekday Automatic Fare Collection (AFC) data on a premium bus line in Brisbane, Australia •Stochastic analysis is compared to peak hour factor (PHF) analysis for insight into passenger loading variability •Hourly design load factor (e.g. 88th percentile) is found to be a useful method of modeling a segment’s passenger demand time-history across a study weekday, for capacity and QoS assessment •Hourly coefficient of variation of load factor is found to be a useful QoS and operational assessment measure, particularly through its relationship with hourly average load factor, and with design load factor •An assessment table based on hourly coefficient of variation of load factor is developed from the case study
Resumo:
This paper proposes a novel peak load management scheme for rural areas. The scheme transfers certain customers onto local nonembedded generators during peak load periods to alleviate network under voltage problems. This paper develops and presents this system by way of a case study in Central Queensland, Australia. A methodology is presented for determining the best location for the nonembedded generators as well as the number of generators required to alleviate network problems. A control algorithm to transfer and reconnect customers is developed to ensure that the network voltage profile remains within specification under all plausible load conditions. Finally, simulations are presented to show the performance of the system over a typical maximum daily load profile with large stochastic load variations.