960 resultados para spleen cell cultured
Resumo:
Spleen cells from mice were examined at 5, 10, 15, 20 and 25 days post-infection (dpi) with Dermatobia hominis larva and at 5, 10, 15, 30 and 60 days post-larval emergence (dple). Cell proliferation in vitro assays were carried out with RPMI-1640 medium and larval secretory product (LSP) of D. hominis at 5, 10, 15, 20 and 25 days. When each group of mice was tested against each medium, significance was only seen for 25 dpi, with increasing order: LSP-10 d, -25 d, -5 d, -20 d, -15 d and RPMI. Significant results were also observed when each medium was tested against mice at each dpi or dple. Each dple group vs. each medium produced significant results only for 10 dple, with increasing order: LSP-5 d, -20 d, -25 d, -10 d, -15 d and RPMI. Comparative tests were also carried out between groups to refine certain observations. The LSPs were also analyzed using SDS-PAGE. The results prove that myiasis caused depletion of spleen cells, particularly under the effect of the LSP-10 and -15, but the cells tended to increase up to 60 dple. This in vitro assay may represent the real systemic immune response in the relationship LSP-D. hominis-host.
Resumo:
A kinetic study of the cells present in the spleen of BALB/c mice infected with Schistosoma mansoni was carried out. The lymphocytes were evaluated phenotypically with monoclonal antibodies and the effect of splenectomy on the modulation of periovular granuloma was also investigated. The infected mice had proportional increases in the numbers of neutophils, plasma cells, macrophages and eosinophils in the spleen. The largest number of neutrophil, plasma cells and macrophage were found between the 8th and the 12th week of infection, while the amount of eosinophils were higher later on, around the 20th week. The lymphocytes phenotipically characterized as Thy 1.2, Lyt 1.2 (CD4) increased mildly in proportional numbers. However, the percentage of lymphocytes with the Lyt 2.2 (CD8) phenotype, which is characteristic of supressor and cytotoxic T cells, increased significantly with the progress of the disease. The numbers of B lymphocytes, which comprise 50% of the mononuclear cells present in the spleen, increased significantly till the 16th week they began to decrease. The mean diameters of periovular granulomas were comparatively similar in both experimental groups (splenectomized and non-splenectomized mice). However, the evolutive types of granuloma (exudative, intermediate and fibrous) in splenectomized mice were proprtionally different from those of non splenectomized mice in the 16th and 24th week of infection. It is inferred that lymphonodes or other secondary lymphoide organs, in the abscence of the spleen, assume a modulating action on periovular granulomas, although the evolution of the granulomas is somehow delayed in splenectomized mice.
Resumo:
The aims of this study were to evaluate the immunomodulatory role of TGF-beta(1), 1L-10, and INF-gamma in spleen and liver extracts and supernatant cultures of white spleen cells from male symptomatic and asymptomatic dogs, naturally infected by Leishmania (Leishmania) chagasi. Thirty dogs from Aracatuba, São Paulo, Brazil, an endemic leishmaniosis area, were selected by positive ELISA serological reaction for Leishmania sp. and divided into two groups: asymptomatic (n=15) and symptomatic (n=15) consisting of animals with at least three characteristic signs (fever, dermatitis, lymphoadenopathy, onychogryphosis, weight loss, cachex a, locomotion problems, conjunctivitis, epistaxis, hepatosplenomegaly, edema, and apathy). After euthanasia, spleen and liver fragments were collected for ex vivo quantification of TGF-beta(1), IL-10, and INF-gamma. Naturally active in vitro produced TGF-beta(1) was also evaluated in spleen cell culture supernatant. Spleen and liver extract of asymptomatic dogs had higher mean TGF-beta(1) levels than symptomatic dogs. High concentrations of IL-10 were found in spleen, and mainly in liver extract of both groups. Higher INF-gamma concentrations were found in spleen extracts of symptomatic dogs, and in liver extracts of asymptomatic dogs. Extract of this cytokire was lower in spleen extract. Although INF-gamma is being produced in canine infection, mean levels of TGF-beta(1) and IL-10 from spleen and liver extracts were quantitatively much higher; suggesting that immune response in both asymptomatic and symptomatic dogs A as predominantly type Th2. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and > 95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (> 90%) for nuclear transfer significantly improved blastocyst yield after cloning.
Resumo:
The kinetics of growth of Leishmania performed in vitro after internalization of the promastigote form in the cell and the occurrence of the transformation of the parasite into the amastigote form have been described by several authors. They used explants of macrophages in hamster spleen cell culture or in a human macrophage lineage cell, the U937. Using microscopy, the description of morphologic inter-relationship and the analysis of the production of specific molecules, it has been possible to define some of the peculiarities of the biology of the parasite. The present study shows the growth cycle of Leishmania chagasi during the observation of kinetic analysis undertaken with a McCoy cell lineage that lasted for a period of 144 hours. During the process, the morphologic transformation was revealed by indirect immunofluorescence (IF) and the molecules liberated in the extra cellular medium were observed by SDS-PAGE at 24-hour intervals during the whole 144-hour period. It was observed that in the first 72 hours the promastigote form of L. chagasi adhered to the cell membranes and assumed a rounded (amastigote-like) form. At 96 hours the infected cells showed morphologic alterations; at 120 hours the cells had liberated soluble fluorescent antigens into the extra cellular medium. At 144 hours, new elongated forms of the parasites, similar to promastigotes, were observed. In the SDS-PAGE, specific molecular weight proteins were observed at each point of the kinetic analysis showing that the McCoy cell imitates the macrophage and may be considered a useful model for the study of the infection of the Leishmania/cell binomial.
Resumo:
D53 (RibomuntyR) is a composite vaccine made of immunogenic ribosomes from 4 bacterial species (Klebsiella pneumoniae, Haemophilus influenzae, Streptococcus pyogenes and Streptococcus pneumoniae) associated with a membrane proteoglycan from a non encapsulated strain of Klebsiella pneumoniae. D53 is a potent inducer of interleukin-1 production by mouse BALB/c spleen cells as shown by the C3H/HeJ thymocyte co-stimulation assay. Furthermore D53 triggers DNA synthesis by mouse spleen cells and induces the maturation of B lymphocytes into immunoglobulin secreting cells. Polyclonal B cell activation by D53 was readily achieved in the C3H/HeJ strain which is deficient in its response to E. coli lipopolysaccharide. The proliferative response to D53 was abrogated by removal of B cells from the spleen cell suspension, but it was not altered after depletion of T cells or adherent cells. D53 induced polyclonal B cell activation of spleen cells from athymic nude mice and from CBA/N mice. Each component of D53 induced polyclona B cell activation except ribosomes from Streptococcus pneumoniae. Each triggered Interleukin-1 synthesis except ribosomes from Klebsiella penumoniae. These in vitro properties may account for some of the in vivo immunostimulating properties of this composite vaccine.
Resumo:
Eight-week old conventional female Swiss mice were inoculated intravenously with Yersinia enterocolitica O:3. A second group of normal mice was used as control. Five mice from each group were bled by heart puncture and their spleens were removed for spleen cell collection on the 3rd, 5th, 7th, 10th, 14th and 21st day after infection. Immunoglobulin-secreting spleen cells were detected by the isotype-specific protein A plaque assay. Total immunoglobulin levels were determined in mouse serum by single radial immunodiffusion and the presence of autoantibodies was determined by ELISA. We observed a marked increase in the total number of cells secreting immunoglobulins of all isotypes as early as on the 3rd day post-infection and the peak of secretion occurred on the 7th day. At the peak of the immunoglobulin response, the total number of secreting cells was 19 times higher than that of control mice and most immunoglobulin-secreting cells were of the IgG2a isotype. On the 10th day post-infection, total serum immunoglobulin values were 2 times higher in infected animals when compared to the control group, and continued at this level up to the 21st day post-infection. Serum absorption with viable Y. enterocolitica cells had little effect on antibody levels detected by single radial immunodiffusion. Analysis of serum autoantibody levels revealed that Y. enterocolitica infection induced an increase of anti-myosin and anti-myelin immunoglobulins. The sera did not react with collagen. The present study demonstrates that Y. enterocolitica O:3 infection induces polyclonal activation of murine B cells which is correlated with the activation of some autoreactive lymphocyte clones
Resumo:
Two attenuated bacillus Calmette-Guérin (BCG) preparations derived from the same Moreau strain, Copenhagen but grown in Sauton medium containing starch and bacto-peptone (onco BCG, O-BCG), or asparagine (intradermal BCG, ID-BCG), exhibited indistinguishable DNA sequences and bacterial morphology. The number of viable bacilli recovered from spleen, liver and lungs was approximately the same in mice inoculated with the vaccines and was similarly reduced (over 90%) in mice previously immunized with either BCG vaccine. The humoral immune response evoked by the vaccines was, however, distinct. Spleen cell proliferation accompanying the growth of bacilli in tissue was significantly higher in mice inoculated with O-BCG. These cells proliferated in vitro upon challenge with the corresponding BCG extract. Previous cell treatment with mAb anti-CD4 T cells abolished this effect. Anti-BCG antibodies, as assayed either in serum by ELISA or by determining the number of antibody-producing spleen cells by the spot-ELISA method, were significantly higher in mice inoculated with ID-BCG. Anti-BCG antibodies were detected in all immunoglobulin classes, but they were more prevalent in IgG with the following distribution among its isotypes: IgG1>(IgG2a = IgG2b)>IgG3. When some well-characterized Mycobacterium tuberculosis antigens were used as substitutes for BCG extracts in ELISA, although antibodies against the 65-kDa and 96-kDa proteins were detected significantly, antibodies against the 71-kDa, 38-kDa proteins and lipoarabinomannan were only barely detected or even absent. These results indicate that BCG bacilli cultured in Sauton-asparagine medium permitted the multiplication of bacilli, tending to induce a stronger humoral immune response as compared with bacilli grown in Sauton-starch/bacto-peptone-enriched medium.
Resumo:
Spleen or spleen plus bone marrow cells from (BALB/c x C57Bl/6)F1 donors were transferred into BALB/c recipients 21 days before skin or cardiac transplantation. Prolonged graft survival was observed on recipients treated with the mixture of donor-derived cells as compared to those treated with spleen cells alone. We evaluated the expression of CD45RB and CD44 by splenic CD4(+) and CD8(+) T cells 7 and 21 days after donor cell transfer. The populations of CD8(+)CD45RB(low) and CD8(+)CD44(high) cells were significantly decreased in mice pre-treated with donor spleen and bone marrow cells as compared to animals treated with spleen cells only, although these cells expanded in both groups when compared to an earlier time-point. No differences were observed regarding CD4+ T cell population when recipients of donor-derived cells were compared. An enhanced production of IL-10 was observed seven days after transplantation in the supernatants of spleen cell cultures of mice treated with spleen and bone marrow cells. Taken together these data suggest that donor-derived bone marrow cells modulate the sensitization of the recipient by semi-allogeneic spleen cells in part by delaying the generation of activated/memory CD8(+) T cells leading to enhanced graft survival. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Eight-week old conventional female Swiss mice were inoculated intravenously with Yersinia enterocolitica O:3. A second group of normal mice was used as control. Five mice from each group were bled by heart puncture and their spleens were removed for spleen cell collection on the 3rd, 5th, 7th, 10th, 14th and 21st day after infection. Immunoglobulin-secreting spleen cells were detected by the isotype-specific protein A plaque assay. Total immunoglobulin levels were determined in mouse serum by single radial immunodiffusion and the presence of autoantibodies was determined by ELISA. We observed a marked increase in the total number of cells secreting immunoglobulins of all isotypes as early as on the 3rd day post-infection and the peak of secretion occurred on the 7th day. At the peak of the immunoglobulin response, the total number of secreting cells was 19 times higher than that of control mice and most immunoglobulin-secreting cells were of the IgG2a isotype. On the 10th day post-infection, total serum immunoglobul in values were 2 times higher in infected animals when compared to the control group, and continued at this level up to the 21st day post-infection. Serum absorption with viable Y. enterocolitica cells had little effect on antibody levels detected by single radial immunodiffusion. Analysis of serum autoantibody levels revealed that Y. enterocolitica infection induced an increase of anti-myosin and anti-myelin immunoglobulins. The sera did not react with collagen. The present study demonstrates that Y. enterocolitica O:3 infection induces polyclonal activation of murine B cells which is correlated with the activation of some autoreactive lymphocyte clones.
Resumo:
BACKGROUND The growth potential of the tumor-like Echinococcus multilocularis metacestode (causing alveolar echinococcosis, AE) is directly linked to the nature/function of the periparasitic host immune-mediated processes. We previously showed that Fibrinogen-like-protein 2 (FGL2), a novel CD4+CD25+ Treg effector molecule, was over-expressed in the liver of mice experimentally infected with E. multilocularis. However, little is known about its contribution to the control of this chronic helminth infection. METHODS/FINDINGS Key parameters for infection outcome in E. multilocularis-infected fgl2-/- (AE-fgl2-/-) and wild type (AE-WT) mice at 1 and 4 month(s) post-infection were (i) parasite load (i. e. wet weight of parasitic metacestode tissue), and (ii) parasite cell proliferation as assessed by determining E. multilocularis 14-3-3 gene expression levels. Serum FGL2 levels were measured by ELISA. Spleen cells cultured with ConA for 48h or with E. multilocularis Vesicle Fluid (VF) for 96h were analyzed ex-vivo and in-vitro. In addition, spleen cells from non-infected WT mice were cultured with rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For Treg-immune-suppression-assays, purified CD4+CD25+ Treg suspensions were incubated with CD4+ effector T cells in the presence of ConA and irradiated spleen cells as APCs. Flow cytometry and qRT-PCR were used to assess Treg, Th17-, Th1-, Th2-type immune responses and maturation of dendritic cells. We showed that AE-fgl2-/- mice exhibited (as compared to AE-WT-animals) (a) a significantly lower parasite load with reduced proliferation activity, (b) an increased T cell proliferative response to ConA, (c) reduced Treg numbers and function, and (d) a persistent capacity of Th1 polarization and DC maturation. CONCLUSIONS FGL2 appears as one of the key players in immune regulatory processes favoring metacestode survival by promoting Treg cell activity and IL-17A production that contributes to FGL2-regulation. Prospectively, targeting FGL2 could be an option to develop an immunotherapy against AE and other chronic parasitic diseases.
Resumo:
Although the zebrafish possesses many characteristics that make it a valuable model for genetic studies of vertebrate development, one deficiency of this model system is the absence of methods for cell-mediated gene transfer and targeted gene inactivation. In mice, embryonic stem cell cultures are routinely used for gene transfer and provide the advantage of in vitro selection for rare events such as homologous recombination and targeted mutation. Transgenic animals possessing a mutated copy of the targeted gene are generated when the selected cells contribute to the germ line of a chimeric embryo. Although zebrafish embryo cell cultures that exhibit characteristics of embryonic stem cells have been described, successful contribution of the cells to the germ-cell lineage of a host embryo has not been reported. In this study, we demonstrate that short-term zebrafish embryo cell cultures maintained in the presence of cells from a rainbow trout spleen cell line (RTS34st) are able to produce germ-line chimeras when introduced into a host embryo. Messenger RNA encoding the primordial germ-cell marker, vasa, was present for more than 30 days in embryo cells cocultured with RTS34st cells or their conditioned medium and disappeared by 5 days in the absence of the spleen cells. The RTS34st cells also inhibited melanocyte and neuronal cell differentiation in the embryo cell cultures. These results suggest that the RTS34st splenic–stromal cell line will be a valuable tool in the development of a cell-based gene transfer approach to targeted gene inactivation in zebrafish.
Resumo:
Hemopoietic stem cells are a distinct population of cells that can differentiate into multilineages of hemopoietic cells and have long-term repopulation capability. A few membrane-bound molecules have been found to be preferentially, but not uniquely, present on the surface of these primitive cells. We report here the identification of a unique 105-kDa glycoprotein on the surface of hemopoietic stem cell line BL3. This molecule, recognized by the absorbed antiserum, is not present on the surface of myeloid progenitors 32D and FDC-P1 cells, EL4 T cells, and NIH 3T3 fibroblasts. This antiserum can also be used to block the proliferation of BL3 cells even in the presence of mitogen-stimulated spleen cell conditioned medium, which is known to have a stimulating activity on BL3 cells. It can also inhibit development of in vitro, fetal liver cell-derived multilineage colonies, but not other types of colonies, and of in vivo bone marrow cell-derived colony-forming unit spleen foci. These data suggest that gp105 plays an important role in hemopoietic stem cell differentiation.
Resumo:
The role of natural killer (NK) T cells in the development of lupus-like disease in mice is still controversial. We treated NZB/W mice with anti-NK1.1 monoclonal antibodies (mAbs) and our results revealed that administration of either an irrelevant immunoglobulin G2a (IgG2a) mAb or an IgG2a anti-NK1.1 mAb increased the production of anti-dsDNA antibodies in young NZB/W mice. However, the continuous administration of an anti-NK1.1 mAb protected aged NZB/W mice from glomerular injury, leading to prolonged survival and stabilization of the proteinuria. Conversely, the administration of the control IgG2a mAb led to an aggravation of the lupus-like disease. Augmented titres of anti-dsDNA in NZB/W mice, upon IgG2a administration, correlated with the production of BAFF/BLyS by dendritic, B and T cells. Treatment with an anti-NK1.1 mAb reduced the levels of interleukin-16, produced by T cells, in spleen cell culture supernatants from aged NZB/W. Adoptive transfer of NK T cells from aged to young NZB/W accelerated the production of anti-dsDNA in recipient NZB/W mice, suggesting that NK T cells from aged NZB/W are endowed with a B-cell helper activity. In vitro studies, using purified NK T cells from aged NZB/W, showed that these cells provided helper B-cell activity for the production of anti-dsDNA. We concluded that NK T cells are involved in the progression of lupus-like disease in mature NZB/W mice and that immunoglobulin of the IgG2a isotype has an enhancing effect on antibody synthesis due to the induction of BAFF/BLyS, and therefore have a deleterious effect in the NZB/W mouse physiology.
Resumo:
Background: It has previously been suggested that CD4(+) T cells play a pivotal role in regulating the immune response to periodontal pathogens. The aim of the present study therefore was to determine delayed type hypersensitivity (DTH), spleen cell proliferation, serum and splenic anti-Porphyromonas gingivalis antibody levels, and lesion sizes following challenge with viable P. gingiualis in CD4-depleted BALB/c mice immunized with P. gingiualis outer membrane proteins (OMP). Methods: Four groups of BALB/c mice were used. Groups 1 and 2 were injected intraperitoneally (ip) with saline for 3 consecutive days and then weekly throughout the experiment. Groups 3 and 4 were injected ip with rat immunoglobulin and a monoclonal rat anti-mouse CD4 antibody, respectively. Two days later, group 1 mice were injected ip with saline only, while all the other groups were immunized ip with P. gingiualis OMP weekly for 3 weeks. One week later following the last immunization of OMP, 3 separate experiments were conducted to determine: 1) the DTH response to P. gingiualis OMP by measuring footpad swelling; 2) the levels of antibodies to P. gingiualis in serum samples and spleen cell cultures using an enzyme-linked immunosorbent assay, as well as spleen cell proliferation after stimulation with OMP; and 3) the lesion sizes after a subcutaneous challenge with viable P. gingiualis cells. Results: In CD4(+) T-cell-depleted mice (group 4), the DTH response and antigen-stimulated cell proliferation were significantly suppressed when compared to groups 2 and 3. Similarly, the levels of serum and splenic IgM, IgG, and all IgG subclass antibodies to P. gingiualis OMP were depressed. Delayed healing of P. gingivalis-induced lesions was also observed in the CD4(+) T-cell-depleted group. Conclusions: This study has shown that depletion of CD4(+) T cells prior to immunization with P. gingiualis OMP led to the suppression of both the humoral and cell-mediated immune response to this microorganism and that this was associated with delayed healing. These results suggest that the induction of the immune response to P. gingiualis is a CD4(+) T-cell-dependent mechanism and that CD4(+) T cells are important in the healing process.