990 resultados para speech quality
Resumo:
While close talking microphones give the best signal quality and produce the highest accuracy from current Automatic Speech Recognition (ASR) systems, the speech signal enhanced by microphone array has been shown to be an effective alternative in a noisy environment. The use of microphone arrays in contrast to close talking microphones alleviates the feeling of discomfort and distraction to the user. For this reason, microphone arrays are popular and have been used in a wide range of applications such as teleconferencing, hearing aids, speaker tracking, and as the front-end to speech recognition systems. With advances in sensor and sensor network technology, there is considerable potential for applications that employ ad-hoc networks of microphone-equipped devices collaboratively as a virtual microphone array. By allowing such devices to be distributed throughout the users’ environment, the microphone positions are no longer constrained to traditional fixed geometrical arrangements. This flexibility in the means of data acquisition allows different audio scenes to be captured to give a complete picture of the working environment. In such ad-hoc deployment of microphone sensors, however, the lack of information about the location of devices and active speakers poses technical challenges for array signal processing algorithms which must be addressed to allow deployment in real-world applications. While not an ad-hoc sensor network, conditions approaching this have in effect been imposed in recent National Institute of Standards and Technology (NIST) ASR evaluations on distant microphone recordings of meetings. The NIST evaluation data comes from multiple sites, each with different and often loosely specified distant microphone configurations. This research investigates how microphone array methods can be applied for ad-hoc microphone arrays. A particular focus is on devising methods that are robust to unknown microphone placements in order to improve the overall speech quality and recognition performance provided by the beamforming algorithms. In ad-hoc situations, microphone positions and likely source locations are not known and beamforming must be achieved blindly. There are two general approaches that can be employed to blindly estimate the steering vector for beamforming. The first is direct estimation without regard to the microphone and source locations. An alternative approach is instead to first determine the unknown microphone positions through array calibration methods and then to use the traditional geometrical formulation for the steering vector. Following these two major approaches investigated in this thesis, a novel clustered approach which includes clustering the microphones and selecting the clusters based on their proximity to the speaker is proposed. Novel experiments are conducted to demonstrate that the proposed method to automatically select clusters of microphones (ie, a subarray), closely located both to each other and to the desired speech source, may in fact provide a more robust speech enhancement and recognition than the full array could.
Resumo:
This thesis investigates aspects of encoding the speech spectrum at low bit rates, with extensions to the effect of such coding on automatic speaker identification. Vector quantization (VQ) is a technique for jointly quantizing a block of samples at once, in order to reduce the bit rate of a coding system. The major drawback in using VQ is the complexity of the encoder. Recent research has indicated the potential applicability of the VQ method to speech when product code vector quantization (PCVQ) techniques are utilized. The focus of this research is the efficient representation, calculation and utilization of the speech model as stored in the PCVQ codebook. In this thesis, several VQ approaches are evaluated, and the efficacy of two training algorithms is compared experimentally. It is then shown that these productcode vector quantization algorithms may be augmented with lossless compression algorithms, thus yielding an improved overall compression rate. An approach using a statistical model for the vector codebook indices for subsequent lossless compression is introduced. This coupling of lossy compression and lossless compression enables further compression gain. It is demonstrated that this approach is able to reduce the bit rate requirement from the current 24 bits per 20 millisecond frame to below 20, using a standard spectral distortion metric for comparison. Several fast-search VQ methods for use in speech spectrum coding have been evaluated. The usefulness of fast-search algorithms is highly dependent upon the source characteristics and, although previous research has been undertaken for coding of images using VQ codebooks trained with the source samples directly, the product-code structured codebooks for speech spectrum quantization place new constraints on the search methodology. The second major focus of the research is an investigation of the effect of lowrate spectral compression methods on the task of automatic speaker identification. The motivation for this aspect of the research arose from a need to simultaneously preserve the speech quality and intelligibility and to provide for machine-based automatic speaker recognition using the compressed speech. This is important because there are several emerging applications of speaker identification where compressed speech is involved. Examples include mobile communications where the speech has been highly compressed, or where a database of speech material has been assembled and stored in compressed form. Although these two application areas have the same objective - that of maximizing the identification rate - the starting points are quite different. On the one hand, the speech material used for training the identification algorithm may or may not be available in compressed form. On the other hand, the new test material on which identification is to be based may only be available in compressed form. Using the spectral parameters which have been stored in compressed form, two main classes of speaker identification algorithm are examined. Some studies have been conducted in the past on bandwidth-limited speaker identification, but the use of short-term spectral compression deserves separate investigation. Combining the major aspects of the research, some important design guidelines for the construction of an identification model when based on the use of compressed speech are put forward.
Resumo:
Automatic speech recognition from multiple distant micro- phones poses significant challenges because of noise and reverberations. The quality of speech acquisition may vary between microphones because of movements of speakers and channel distortions. This paper proposes a channel selection approach for selecting reliable channels based on selection criterion operating in the short-term modulation spectrum domain. The proposed approach quantifies the relative strength of speech from each microphone and speech obtained from beamforming modulations. The new technique is compared experimentally in the real reverb conditions in terms of perceptual evaluation of speech quality (PESQ) measures and word error rate (WER). Overall improvement in recognition rate is observed using delay-sum and superdirective beamformers compared to the case when the channel is selected randomly using circular microphone arrays.
Resumo:
Speech enhancement in stationary noise is addressed using the ideal channel selection framework. In order to estimate the binary mask, we propose to classify each time-frequency (T-F) bin of the noisy signal as speech or noise using Discriminative Random Fields (DRF). The DRF function contains two terms - an enhancement function and a smoothing term. On each T-F bin, we propose to use an enhancement function based on likelihood ratio test for speech presence, while Ising model is used as smoothing function for spectro-temporal continuity in the estimated binary mask. The effect of the smoothing function over successive iterations is found to reduce musical noise as opposed to using only enhancement function. The binary mask is inferred from the noisy signal using Iterated Conditional Modes (ICM) algorithm. Sentences from NOIZEUS corpus are evaluated from 0 dB to 15 dB Signal to Noise Ratio (SNR) in 4 kinds of additive noise settings: additive white Gaussian noise, car noise, street noise and pink noise. The reconstructed speech using the proposed technique is evaluated in terms of average segmental SNR, Perceptual Evaluation of Speech Quality (PESQ) and Mean opinion Score (MOS).
Resumo:
This paper describes a speech coding technique that has been developed in order to provide a method of digitising speech at bit rates in the range 4. 8 to 8 kb/s, that is insensitive to the effects of acoustic background noise and bit errors on the digital link. The main aim has been to develop a coding scheme which provides speech quality and robustness against noise and errors that is similar to a 16000 b/s continuously variable slope delta (CVSD) coder, but which operates at half its data rate or less. A desirable aim was to keep the complexity of the coding scheme within the scope of what could reasonably be handled by current signal processing chips or by a single custom integrated circuit. Applications areas include mobile radio and small Satcomms terminals.
Resumo:
This paper presents a new approach to speech enhancement from single-channel measurements involving both noise and channel distortion (i.e., convolutional noise), and demonstrates its applications for robust speech recognition and for improving noisy speech quality. The approach is based on finding longest matching segments (LMS) from a corpus of clean, wideband speech. The approach adds three novel developments to our previous LMS research. First, we address the problem of channel distortion as well as additive noise. Second, we present an improved method for modeling noise for speech estimation. Third, we present an iterative algorithm which updates the noise and channel estimates of the corpus data model. In experiments using speech recognition as a test with the Aurora 4 database, the use of our enhancement approach as a preprocessor for feature extraction significantly improved the performance of a baseline recognition system. In another comparison against conventional enhancement algorithms, both the PESQ and the segmental SNR ratings of the LMS algorithm were superior to the other methods for noisy speech enhancement.
Resumo:
This thesis investigated the potential use of Linear Predictive Coding in speech communication applications. A Modified Block Adaptive Predictive Coder is developed, which reduces the computational burden and complexity without sacrificing the speech quality, as compared to the conventional adaptive predictive coding (APC) system. For this, changes in the evaluation methods have been evolved. This method is as different from the usual APC system in that the difference between the true and the predicted value is not transmitted. This allows the replacement of the high order predictor in the transmitter section of a predictive coding system, by a simple delay unit, which makes the transmitter quite simple. Also, the block length used in the processing of the speech signal is adjusted relative to the pitch period of the signal being processed rather than choosing a constant length as hitherto done by other researchers. The efficiency of the newly proposed coder has been supported with results of computer simulation using real speech data. Three methods for voiced/unvoiced/silent/transition classification have been presented. The first one is based on energy, zerocrossing rate and the periodicity of the waveform. The second method uses normalised correlation coefficient as the main parameter, while the third method utilizes a pitch-dependent correlation factor. The third algorithm which gives the minimum error probability has been chosen in a later chapter to design the modified coder The thesis also presents a comparazive study beh-cm the autocorrelation and the covariance methods used in the evaluaiicn of the predictor parameters. It has been proved that the azztocorrelation method is superior to the covariance method with respect to the filter stabf-it)‘ and also in an SNR sense, though the increase in gain is only small. The Modified Block Adaptive Coder applies a switching from pitch precitzion to spectrum prediction when the speech segment changes from a voiced or transition region to an unvoiced region. The experiments cont;-:ted in coding, transmission and simulation, used speech samples from .\£=_‘ajr2_1a:r1 and English phrases. Proposal for a speaker reecgnifion syste: and a phoneme identification system has also been outlized towards the end of the thesis.
Resumo:
Speech signals degraded by additive noise can affects different applications in telecommunication. The noise may degrades the intelligibility of the speech signals and its waveforms as well. In some applications such as speech coding, both intelligibility and waveform quality are important but only intelligibility has been focused lastly. So, modern speech quality measurement techniques such as PESQ (Perceptual Evaluation of Speech Quality) have been used and classical distortion measurement techniques such as Cepstral Distance are becoming unused. In this paper it is shown that some classical distortion measures are still important in applications where speech corrupted by additive noise has to be evaluated.
Resumo:
We present a new method for the enhancement of speech. The method is designed for scenarios in which targeted speaker enrollment as well as system training within the typical noise environment are feasible. The proposed procedure is fundamentally different from most conventional and state-of-the-art denoising approaches. Instead of filtering a distorted signal we are resynthesizing a new “clean” signal based on its likely characteristics. These characteristics are estimated from the distorted signal. A successful implementation of the proposed method is presented. Experiments were performed in a scenario with roughly one hour of clean speech training data. Our results show that the proposed method compares very favorably to other state-of-the-art systems in both objective and subjective speech quality assessments. Potential applications for the proposed method include jet cockpit communication systems and offline methods for the restoration of audio recordings.
Resumo:
This paper proposes an emotion transplantation method capable of modifying a synthetic speech model through the use of CSMAPLR adaptation in order to incorporate emotional information learned from a different speaker model while maintaining the identity of the original speaker as much as possible. The proposed method relies on learning both emotional and speaker identity information by means of their adaptation function from an average voice model, and combining them into a single cascade transform capable of imbuing the desired emotion into the target speaker. This method is then applied to the task of transplanting four emotions (anger, happiness, sadness and surprise) into 3 male speakers and 3 female speakers and evaluated in a number of perceptual tests. The results of the evaluations show how the perceived naturalness for emotional text significantly favors the use of the proposed transplanted emotional speech synthesis when compared to traditional neutral speech synthesis, evidenced by a big increase in the perceived emotional strength of the synthesized utterances at a slight cost in speech quality. A final evaluation with a robotic laboratory assistant application shows how by using emotional speech we can significantly increase the students’ satisfaction with the dialog system, proving how the proposed emotion transplantation system provides benefits in real applications.
Resumo:
The need for low bit-rate speech coding is the result of growing demand on the available radio bandwidth for mobile communications both for military purposes and for the public sector. To meet this growing demand it is required that the available bandwidth be utilized in the most economic way to accommodate more services. Two low bit-rate speech coders have been built and tested in this project. The two coders combine predictive coding with delta modulation, a property which enables them to achieve simultaneously the low bit-rate and good speech quality requirements. To enhance their efficiency, the predictor coefficients and the quantizer step size are updated periodically in each coder. This enables the coders to keep up with changes in the characteristics of the speech signal with time and with changes in the dynamic range of the speech waveform. However, the two coders differ in the method of updating their predictor coefficients. One updates the coefficients once every one hundred sampling periods and extracts the coefficients from input speech samples. This is known in this project as the Forward Adaptive Coder. Since the coefficients are extracted from input speech samples, these must be transmitted to the receiver to reconstruct the transmitted speech sample, thus adding to the transmission bit rate. The other updates its coefficients every sampling period, based on information of output data. This coder is known as the Backward Adaptive Coder. Results of subjective tests showed both coders to be reasonably robust to quantization noise. Both were graded quite good, with the Forward Adaptive performing slightly better, but with a slightly higher transmission bit rate for the same speech quality, than its Backward counterpart. The coders yielded acceptable speech quality of 9.6kbps for the Forward Adaptive and 8kbps for the Backward Adaptive.
Resumo:
Real-Time services are traditionally supported on circuit switched network. However, there is a need to port these services on packet switched network. Architecture for audio conferencing application over the Internet in the light of ITU-T H.323 recommendations is considered. In a conference, considering packets only from a set of selected clients can reduce speech quality degradation because mixing packets from all clients can lead to lack of speech clarity. A distributed algorithm and architecture for selecting clients for mixing is suggested here based on a new quantifier of the voice activity called “Loudness Number” (LN). The proposed system distributes the computation load and reduces the load on client terminals. The highlights of this architecture are scalability, bandwidth saving and speech quality enhancement. Client selection for playing out tries to mimic a physical conference where the most vocal participants attract more attention. The contributions of the paper are expected to aid H.323 recommendations implementations for Multipoint Processors (MP). A working prototype based on the proposed architecture is already functional.
Resumo:
In this work a new method is proposed for noise reduction in speech signals in the wavelet domain. The method for signal processing makes use of a transfer function, obtained as a polynomial combination of three processings, denominated operators. The proposed method has the objective of overcoming the deficiencies of the thresholding methods and the effective processing of speech corrupted by real noises. Using the method, two speech signals are processed, contaminated by white noise and colored noises. To verify the quality of the processed signals, two evaluation measures are used: signal to noise ratio (SNR) and perceptual evaluation of speech quality (PESQ).