949 resultados para specialized schizothoracine fishes
Resumo:
Phylogeny of the specialized schizothoracine fishes (Teleostei: Cypriniformes: Cyprinidae). Zoological Studies 40(2). 147-157. To elucidate phylogenetic relationships within the specialized schizothoracine fishes, we used 41 variable osteological and exte
Resumo:
Molecular phylogeny of three genera containing nine species and subspecies of the specialized schizothoracine fishes are investigated based on the complete nucleotide sequence of mitochondrial cytochrome b gene. Meantime relationships between the main cladogenetic events of the specialized schizothoracine fishes and the stepwise uplift of the Qinghai-Tibetan Plateau are also conducted using the molecular clock, which is calibrated by geological isolated events between the upper reaches of the Yellow River and the Qinghai Lake. Results indicated that the specialized schizothoracine fishes are not a monophyly. Five species and subspecies of Ptychobarbus form a monophyly. But three species of Gymnodiptychus do not form a monophyly. Gd. integrigymnatus is a sister taxon of the highly specialized schizothoracine fishes while Gd. pachycheilus has a close relation with Gd. dybowskii, and both of them are as a sister group of Diptychus maculatus. The specialized schizothoracines fishes might have originated during the Miocene (about 10 MaBP), and then the divergence of three genera happened during late Miocene (about 8 MaBP). Their main specialization occurred during the late Pliocene and Pleistocene (3.54-0.42 MaBP). The main cladogenetic events of the specialized schizothoracine fishes are mostly correlated with the geological tectonic events and intensive climate shift happened at 8, 3.6, 2.5 and 1.7 MaBP of the late Cenozoic. Molecular clock data do not support the hypothesis that the Qinghai-Tibetan Plateau uplifted to near present or even higher elevations during the Oligocene or Miocene, and neither in agreement with the view that the plateau uplifting reached only to an altitude of 2000 in during the late Pliocene (about 2.6 MaBP).
Resumo:
Molecular phylogeny of three genera containing nine species and subspecies of the specialized schizothoracine fishes are investigated based on the complete nucleotide sequence of mitochondrial cytochrome b gene. Meantime relationships between the main cladogenetic events of the specialized schizothoracine fishes and the stepwise uplift of the Qinghai-Tibetan Plateau are also conducted using the molecular clock, which is calibrated by geological isolated events between the upper reaches of the Yellow River and the Qinghai Lake. Results indicated that the specialized schizothoracine fishes are not a monophyly. Five species and subspecies of Ptychobarbus form a monophyly. But three species of Gymnodiptychus do not form a monophyly. Gd. integrigymnatus is a sister taxon of the highly specialized schizothoracine fishes while Gd. pachycheilus has a close relation with Gd. dybowskii, and both of them are as a sister group of Diptychus maculatus. The specialized schizothoracines fishes might have originated during the Miocene (about 10 MaBP), and then the divergence of three genera happened during late Miocene (about 8 MaBP). Their main specialization occurred during the late Pliocene and Pleistocene (3.54-0.42 MaBP). The main cladogenetic events of the specialized schizothoracine fishes are mostly correlated with the geological tectonic events and intensive climate shift happened at 8, 3.6, 2.5 and 1.7 MaBP of the late Cenozoic. Molecular clock data do not support the hypothesis that the Qinghai-Tibetan Plateau uplifted to near present or even higher elevations during the Oligocene or Miocene, and neither in agreement with the view that the plateau uplifting reached only to an altitude of 2000 in during the late Pliocene (about 2.6 MaBP).
Resumo:
Phylogeny of the specialized schizothoracine fishes (Teleostei: Cypriniformes: Cyprinidae). Zoological Studies 40(2). 147-157. To elucidate phylogenetic relationships within the specialized schizothoracine fishes, we used 41 variable osteological and external characters among this groups, three species of Schizothorax, and 1 fossil species. When the 3 species of Schizothorax were designated as an outgroup and all 41 characters were set as unordered with equal weighting, the data matrix yielded a single most-parsimonious tree with a tree length of 71 steps, a consistency index of 0.6761, and a retention index of 0.7416. Meanwhile, a bootstrap test was conducted to verify the reliability of the results. The matrix was also analyzed for different conditions: all characters were ordered and the fossil species was added as an outgroup. The phylogenetic analyses presented herein support the following hypotheses. 1) All species of the specialized schizo-thoracines fishes form a monophyletic group. 2) Monophyly of the genus Ptychobarbus is not supported by the bootstrap test or when these characters are ordered. 3) The genus Gymnodiptychus forms a monophyletic group. 4) All species of Ptychobarbus and Gymnodiptychus form a monophyletic group with Diptychus as its sister group.
Resumo:
The complete 1140 bp mitochondial cytochrome b sequences were obtained from 39 individuals representing five species of all four genera of highly specialized schizothoracine fishes distributed in the Qinghai-Tibet plateau. Sequence variation of the cytochrome b gene was surveyed among the 39 individuals as well as three primitive schizothoracines and one outgroup. Phylogenetic analysis suggested that the group assignment based on 1140 bp of the cytochrome b sequence is obviously; different from previous assignments, and the highly specialized schizothoracine fishes (Schizopygopsis pylzovi, Gymnocypris przewalskii, G. eckloni, Chuanchia lablosa, and Platypharodon extremus) form a monophyletic group that is sister to the clade formed by the primitive schizothoracine fishes (Schizothorax prenanti, S. pseudaksaiensis, and S. argentatus). The haplotypes of Schizopygopsis pylzovi and G. przewalskii were paraphyletic based on cytochrome b data, which most likely reflected incomplete sorting of mitochondrial DNA lineages. The diploid chromosome numbers of Schizofhoracinae were considered in phylogenetic analysis and provided a clear pattern of relationships. Molecular dating estimated for highly specialized schizothoracine fishes suggested that the highly specialized schizothoracine fishes diverged in the late Miocene Pliocene to Pleistocene (4.5x10(4)-4.05x10(6) Years BP). The relationship between the cladogenesis of highly specialized schizothoracine fishes and geographical events of the Qinghai-Tibet plateau is discussed.
Resumo:
We recovered the phylogenetic relationships among 23 species and subspecies of the highly specialized grade schizothoracine fishes distributing at 36 geographical sites in the Tibetan Plateau and its Surrounding regions by analyzing sequences of cytochrome b genes. Furthermore, we estimated the possible divergent times among lineages based on a historical geological isolation event in the Tibetan Plateau. The molecular data revealed that the highly specialized grade schizothoracine fishes were not a monophyletic group, but were the same as genera Gymnocypris and Schizogypsis. Our results indicated that the molecular phylogenetic relationships apparently reflected their geographical and historical associations with drainages, namely species from the same and adjacent drainages clustered together and had close relationships. The divergence times of different lineages were well consistent with the rapid uplift phases of the Tibetan Plateau in the late Cenozoic, suggesting that the origin and evolution of schizothoracine fishes were strongly influenced by environment changes resulting from the upheaval of the Tibetan Plateau.
Resumo:
The identity of Schizothorax griseus Pellegrin, 1931, is clarified and the species redescribed. Three new species previously identified as S. griseus are described: S. nudiventris, from the Lancang Jiang, China; S. heterophysallidos, from the Nanpan Jiang
Resumo:
National Natural Science Foundation of China (NSFC) [30225008, 30300036, 30530120]; Key Innovation Plan [KSCX2-SW-106]; National Basic Research Project in China [2005cb422005]; National Natural Science Foundation of China [30600062]
Resumo:
Gymnodiptychus integrigymnatus is a critically endangered species endemic to the Gaoligongshan Mountains. It was thought to be only distributed in several headwater-streams of the Longchuanjiang River (west slope of the Gaoligongshan Mountains, belonging to the Irrawaddy River drainage). In recent years, dozens of G. integrigymnatus specimens have been collected in some streams on the east slope of the Gaoligongshan Mountains (the Salween drainage). We performed a morphological and genetic analyses (based on cytochrome b and D-loop) of the newly discovered populations of G. integrigymnatus to determine whether the degree of separation of these populations warrants species status. Our analysis from the cytochrome b gene revealed that nine individuals from the Irrawaddy drainage area and seven individuals from the Salween drainage area each have only one unique haplotype. The genetic distance between the two haplotypes is 1.97%. Our phylogenetic analysis revealed that G. integrigymnatus is closely related to highly specialized schizothoracine fishes. Analysis from the mitochondrial control region revealed that G. integrigymnatus has relatively high genetic diversity (pi was 0.00891 and h was 0.8714), and individuals from different river drainages do not share the same haplotypes. The AMOVA results indicated 87.27% genetic variability between the Salween and Irrawaddy populations. Phylogenetic trees show two major geographic groups corresponding to the river systems. We recommend that G. integrigymnatus should be considered as a high priority for protected species status in the Gaoligongshan Mountains National Nature Reserve, and that the area of the Gaoligongshan Mountains National Nature Reserve should be expanded to cover the entire distribution of G. integrigymnatus. Populations of G. integrigymnatus from different river systems should be treated as evolutionarily significant units.
Resumo:
Ptychobarbus dipogon is an endemic fish in the Yarlung Tsangpo River, but its biology is poorly known. We sampled 582 specimens (total length, TL, between 70.6 and 593.0 mm) from April 2004 to August 2006 in the Lhasa River, Tibet. We estimated ages based on the counts of alternating opaque and translucent zones (annuli) in thin transverse sections of lapilli otoliths. Ages ranged from 1(+) to 23(+) years for males and 1(+) to 44(+) for females. The observed 44(+) years was the oldest reported for schizothoracine fishes. Females attained a larger size than males. The TL weight relationship was W=7.12 x 10(-6)TL(3.006) for combined sexes. The growth parameters fitted von Bertalanffy growth functions were L-infinity = 598.66 mm, k=0.0898 year(-1), t(0)=-0.7261 year and W-infinity = 1585.38 g for females and L-infinity = 494.23mm, k=0.1197 year(-1), t(0)=-0.7296 year and W-infinity = 904.88g for males. The longevities of 32.7 year for females and 24.3 year for males were similar to the observed ages. Using an empirical model we estimated the instantaneous rate of total mortality (Z) at 0.28 per year in the lower reaches. Z in the upper and middle stocks was close to the M because of unexploited or lightly exploited stock. Protracted longevity, slow growth, low natural mortality and large body size were typical characteristics of P. dipogon. The current declining trend of P. dipogon could be prevented by altering fishing regulations.
Resumo:
149 complete mitochondrial DNA (mtDNA) cytochrome b (Cyt b) genes (1140 bp) of Gymnocypris przewalskii, Gymnocypris eckloni and Gymnocyptis scolistomus from the Lake Qinghai, Yellow River and Qaidam Basin were sequenced and analyzed. Consistent dendrogram indicated that the samples collected from the same species do not constitute a separate monophyletic group and all the samples were grouped into three highly divergent lineages (A, B and C). Among them, Lineage A contained all samples of G. przewalskii from the Lake Qinghai and partial samples of the G. eckloni from the Yellow River. Lineage B contained the remaining samples of G. eckloni from the Yellow River. Lineage C was composed of a monophyletic group by G. eckloni from the Qaidam Basin. Analysis of molecular variance (AMOVA) indicated that most of genetic variations were detected within these three mtDNA lineages (93.12%), suggesting that there are three different lineages of Gymnocypris in this region. Our Cyt b sequence data showed that G. przewalskii was not a polytypic species, and G. scolistomus was neither an independent species nor a subspecies of G. eckloni. The divergent mtDNA lineages of G. eckloni from the Yellow River suggested that gene flow between the different populations was restricted to a certain extent by several gorges on the upper reach of the Yellow River. Lineage B of G. eckloni might be the genetic effect from the ancestor which was incorporated with the endemic schizothoracine fishes when the headward erosion of the Yellow River reached to its current headwaters of late. The G. eckloni from Basin Qaidam was a monophyletic group (lineage C) and F-st values within G. eckloni from the Yellow River were higher than 0.98, suggesting that the gene flow has been interrupted for a long time and the G. eckloni from Basin Qaidam might have been evolved into different species by ecology segregation. The correlation between the rakers number of Gymnocypris and population genetic variation was not significant. All Gymnocypris populations exhibited a low nucleotide diversity (pi = 0.00096-0.00485). Therefore the Gymnocyptis populations from Basin Qaidam could have experienced severe bottleneck effect in history. Our result suggested Gym-nocypris populations of Basin Qaidam should give a high priority in conservation programs.
Resumo:
Hypothesis: In parasites that use hosts for offspring development, adults may base oviposition decisions on a range of host traits related either to host quality or the co-evolutionary relationship between parasite and host. We examined whether host quality or co-evolutionary dynamics drive the use of hosts in the bitterling-mussel relationship. Organisms: Six species of bitterling fish (Acheilognathinae) and eight species of freshwater mussels (Unionidae, Corbiculidae) that are used by bitterling for oviposition. Site of experiments: Experimental tanks in Wuhan, China, at the site of the natural distribution of the studied species. Methods: Three experiments that controlled for host accessibility and interspecific interactions were conducted to identify host preferences among bitterling fishes and their mussel hosts. We started with a broad interspecific comparison. We then tested bitterling behavioural choices, their temporal stability, and mussel host ejection behaviour of the eggs of generalist and specialist bitterling species. Finally, we measured host mussel quality based on respiration rate and used published studies on mussel gill structure to infer mussel suitability as hosts for bitterling eggs. Results: We found significant interspecific differences among bitterling species in their use of mussel hosts. Bitterling species varied in their level of host specificity and identity of preferred hosts. Host preferences were flexible even among apparently specialized species and fishes switched their preferences adaptively when the quality of individuals of preferred host species declined. Mussels varied considerably in their response to oviposition through egg ejections. Host preference by a generalist bitterling species correlated positively with host quality measured as the efficiency of the mussel gills to extract oxygen from inhaled water. Host ability to eject bitterling eggs correlated positively with their relative respiration rate, probably due to a higher velocity of water circulating in the mussel gill chamber.
Resumo:
Fishes probably were the first vertebrate seed dispersers, yet little research has examined this phenomenon. We review evidence of fruit and seed consumption by fishes, and analyze the evolution of frugivory and granivory using South American serrasalmids as a model. Frugivory and granivory are observed among diverse fish taxa worldwide, although most reports are from the Neotropics. Frugivory and granivory among serrasalmids apparently are derived from omnivory, with powerful jaws and specialized dentition appearing as major adaptations. No particular fruit traits seem to be associated with seed dispersal by fishes (ichthyochory). Recent experimental evidence of ichthyochory suggests that fishes can influence riparian vegetation dynamics. Because of deleterious human impacts on aquatic ecosystems worldwide, many critical interactions between plants and fishes have been disrupted before they could be studied. Exotic frugivorous fishes have recently become established on foreign continents, with unknown ecological consequences.
Resumo:
Snakehead fishes in the family Channidae are obligate freshwater fishes represented by two extant genera, the African Parachannna and the Asian Channa. These species prefer still or slow flowing water bodies, where they are top predators that exercise high levels of parental care, have the ability to breathe air, can tolerate poor water quality, and interestingly, can aestivate or traverse terrestrial habitat in response to seasonal changes in freshwater habitat availability. These attributes suggest that snakehead fishes may possess high dispersal potential, irrespective of the terrestrial barriers that would otherwise constrain the distribution of most freshwater fishes. A number of biogeographical hypotheses have been developed to account for the modern distributions of snakehead fishes across two continents, including ancient vicariance during Gondwanan break-up, or recent colonisation tracking the formation of suitable climatic conditions. Taxonomic uncertainty also surrounds some members of the Channa genus, as geographical distributions for some taxa across southern and Southeast (SE) Asia are very large, and in one case is highly disjunct. The current study adopted a molecular genetics approach to gain an understanding of the evolution of this group of fishes, and in particular how the phylogeography of two Asian species may have been influenced by contemporary versus historical levels of dispersal and vicariance. First, a molecular phylogeny was constructed based on multiple DNA loci and calibrated with fossil evidence to provide a dated chronology of divergence events among extant species, and also within species with widespread geographical distributions. The data provide strong evidence that trans-continental distribution of the Channidae arose as a result of dispersal out of Asia and into Africa in the mid–Eocene. Among Asian Channa, deep divergence among lineages indicates that the Oligocene-Miocene boundary was a time of significant species radiation, potentially associated with historical changes in climate and drainage geomorphology. Mid-Miocene divergence among lineages suggests that a taxonomic revision is warranted for two taxa. Deep intra-specific divergence (~8Mya) was also detected between C. striata lineages that occur sympatrically in the Mekong River Basin. The study then examined the phylogeography and population structure of two major taxa, Channa striata (the chevron snakehead) and the C. micropeltes (the giant snakehead), across SE Asia. Species specific microsatellite loci were developed and used in addition to a mitochondrial DNA marker (Cyt b) to screen neutral genetic variation within and among wild populations. C. striata individuals were sampled across SE Asia (n=988), with the major focus being the Mekong Basin, which is the largest drainage basin in the region. The distributions of two divergent lineages were identified and admixture analysis showed that where they co-occur they are interbreeding, indicating that after long periods of evolution in isolation, divergence has not resulted in reproductive isolation. One lineage is predominantly confined to upland areas of northern Lao PDR to the north of the Khorat Plateau, while the other, which is more closely related to individuals from southern India, has a widespread distribution across mainland SE Asian and Sumatra. The phylogeographical pattern recovered is associated with past river networks, and high diversity and divergence among all populations sampled reveal that contemporary dispersal is very low for this taxon, even where populations occur in contiguous freshwater habitats. C. micropeltes (n=280) were also sampled from across the Mekong River Basin, focusing on the lower basin where it constitutes an important wild fishery resource. In comparison with C. striata, allelic diversity and genetic divergence among populations were extremely low, suggesting very recent colonisation of the greater Mekong region. Populations were significantly structured into at least three discrete populations in the lower Mekong. Results of this study have implications for establishing effective conservation plans for managing both species, that represent economically important wild fishery resources for the region. For C. micropeltes, it is likely that a single fisheries stock in the Tonle Sap Great Lake is being exploited by multiple fisheries operations, and future management initiatives for this species in this region will need to account for this. For C. striata, conservation of natural levels of genetic variation will require management initiatives designed to promote population persistence at very localised spatial scales, as the high level of population structuring uncovered for this species indicates that significant unique diversity is present at this fine spatial scale.