939 resultados para soil moisture zone
Resumo:
Hydrogeophysics is a growing discipline that holds significant promise to help elucidate details of dynamic processes in the near surface, built on the ability of geophysical methods to measure properties from which hydrological and geochemical variables can be derived. For example, bulk electrical conductivity is governed by, amongst others, interstitial water content, fluid salinity, and temperature, and can be measured using a range of geophysical methods. In many cases, electrical resistivity tomography (ERT) is well suited to characterize these properties in multiple dimensions and to monitor dynamic processes, such as water infiltration and solute transport. In recent years, ERT has been used increasingly for ecosystem research in a wide range of settings; in particular to characterize vegetation-driven changes in root-zone and near-surface water dynamics. This increased popularity is due to operational factors (e.g., improved equipment, low site impact), data considerations (e.g., excellent repeatability), and the fact that ERT operates at scales significantly larger than traditional point sensors. Current limitations to a more widespread use of the approach include the high equipment costs, and the need for site-specific petrophysical relationships between properties of interest. In this presentation we will discuss recent equipment advances and theoretical and methodological aspects involved in the accurate estimation of soil moisture from ERT results. Examples will be presented from two studies in a temperate climate (Michigan, USA) and one from a humid tropical location (Tapajos, Brazil).
Resumo:
The soil moisture characteristic (SMC) forms an important input to mathematical models of water and solute transport in the unsaturated-soil zone. Owing to their simplicity and ease of use, texture-based regression models are commonly used to estimate the SMC from basic soil properties. In this study, the performances of six such regression models were evaluated on three soils. Moisture characteristics generated by the regression models were statistically compared with the characteristics developed independently from laboratory and in-situ retention data of the soil profiles. Results of the statistical performance evaluation, while providing useful information on the errors involved in estimating the SMC, also highlighted the importance of the nature of the data set underlying the regression models. Among the models evaluated, the one possessing an underlying data set of in-situ measurements was found to be the best estimator of the in-situ SMC for all the soils. Considerable errors arose when a textural model based on laboratory data was used to estimate the field retention characteristics of unsaturated soils.
Resumo:
Estimation of soil parameters by inverse modeling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise when heterogeneous layered soils are considered. The objective of this study was to explore the potential of combining observations on surface soil moisture and crop variables - leaf area index (LAI) and above-ground biomass for estimating soil parameters (water holding capacity and soil depth) in a two-layered soil system using inversion of the crop model STICS. This was performed using GLUE method on a synthetic data set on varying soil types and on a data set from a field experiment carried out in two maize plots in South India. The main results were (i) combination of surface soil moisture and above-ground biomass provided consistently good estimates with small uncertainity of soil properties for the two soil layers, for a wide range of soil paramater values, both in the synthetic and the field experiment, (ii) above-ground biomass was found to give relatively better estimates and lower uncertainty than LAI when combined with surface soil moisture, especially for estimation of soil depth, (iii) surface soil moisture data, either alone or combined with crop variables, provided a very good estimate of the water holding capacity of the upper soil layer with very small uncertainty whereas using the surface soil moisture alone gave very poor estimates of the soil properties of the deeper layer, and (iv) using crop variables alone (else above-ground biomass or LAI) provided reasonable estimates of the deeper layer properties depending on the soil type but provided poor estimates of the first layer properties. The robustness of combining observations of the surface soil moisture and the above-ground biomass for estimating two layer soil properties, which was demonstrated using both synthetic and field experiments in this study, needs now to be tested for a broader range of climatic conditions and crop types, to assess its potential for spatial applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Hysteresis models that eliminate the artificial pumping errors associated with the Kool-Parker (KP) soil moisture hysteresis model, such as the Parker-Lenhard (PL) method, can be computationally demanding in unsaturated transport models since they need to retain the wetting-drying history of the system. The pumping errors in these models need to be eliminated for correct simulation of cyclical systems (e.g. transport above a tidally forced watertable, infiltration and redistribution under periodic irrigation) if the soils exhibit significant hysteresis. A modification is made here to the PL method that allows it to be more readily applied to numerical models by eliminating the need to store a large number of soil moisture reversal points. The modified-PL method largely eliminates any artificial pumping error and so essentially retains the accuracy of the original PL approach. The modified-PL method is implemented in HYDRUS-1D (version 2.0), which is then used to simulate cyclic capillary fringe dynamics to show the influence of removing artificial pumping errors and to demonstrate the ease of implementation. Artificial pumping errors are shown to be significant for the soils and system characteristics used here in numerical experiments of transport above a fluctuating watertable. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and sedge vegetation with higher soil moisture.
Resumo:
Acknowledgments This work was granted by the China-UK jointed Red Soil Critical Zone project from National Natural Science Foundation of China (NSFC: 41571130053; 41301233) and from Natural Environmental Research Council (NERC: Code: NE/N007611/1), and by the National Key Technology R&D Program of China (2011BAD31B04). We thank two anonymous reviewers for their constructive comments.
Resumo:
The neutron logging method has been widely used for field measurement of soil moisture content. This non-destructive method permitted the measurement of in-situ soil moisture content at various depths without the need for burying any sensor. Twenty-three sites located around regional Melbourne have been selected for long term monitoring of soil moisture content using neutron probe. Soil samples collected during the installation are used for site characterisation and neutron probe calibration purposes. A linear relationship is obtained between the corrected neutron probe reading and moisture content for both the individual and combined data from seven sites. It is observed that the liner relationship, developed using combined data, can be used for all sites with an average accuracy of about 80%. Monitoring of the variation of soil moisture content with depth in six months for two sites is presented in this paper.
Resumo:
There are several popular soil moisture measurement methods today such as time domain reflectometry, electromagnetic (EM) wave, electrical and acoustic methods. Significant studies have been dedicated in developing method of measurements using those concepts, especially to achieve the characteristics of noninvasiveness. EM wave method provides an advantage because it is non-invasive to the soil and does not need to utilise probes to penetrate or bury in the soil. But some EM methods are also too complex, expensive, and not portable for the application of Wireless Sensor Networks; for example satellites or UAV (Unmanned Aerial Vehicle) based sensors. This research proposes a method in detecting changes in soil moisture using soil-reflected electromagnetic (SREM) wave from Wireless Sensor Networks (WSNs). Studies have shown that different levels of soil moisture will affects soil’s dielectric properties, such as relative permittivity and conductivity, and in turns change its reflection coefficients. The SREM wave method uses a transmitter adjacent to a WSNs node with purpose exclusively to transmit wireless signals that will be reflected by the soil. The strength from the reflected signal that is determined by the soil’s reflection coefficients is used to differentiate the level of soil moisture. The novel nature of this method comes from using WSNs communication signals to perform soil moisture estimation without the need of external sensors or invasive equipment. This innovative method is non-invasive, low cost and simple to set up. There are three locations at Brisbane, Australia chosen as the experiment’s location. The soil type in these locations contains 10–20% clay according to the Australian Soil Resource Information System. Six approximate levels of soil moisture (8, 10, 13, 15, 18 and 20%) are measured at each location; with each measurement consisting of 200 data. In total 3600 measurements are completed in this research, which is sufficient to achieve the research objective, assessing and proving the concept of SREM wave method. These results are compared with reference data from similar soil type to prove the concept. A fourth degree polynomial analysis is used to generate an equation to estimate soil moisture from received signal strength as recorded by using the SREM wave method.
Resumo:
Introduction: There is a recognised relationship between dry weather conditions and increased risk of anterior cruciate ligament (ACL) injury. Previous studies have identified 28 day evaporation as an important weather-based predictor of non-contact ACL injuries in professional Australian Football League matches. The mechanism of non-contact injury to the ACL is believed to increased traction and impact forces between footwear and playing surface. Ground hardness and the amount and quality of grass are factors that would most likely influence this and are inturn, related to the soil moisture content and prevailing weather conditions. This paper explores the relationship between soil moisture content, preceding weather conditions and the Clegg Soil Impact Test (CSIT) which is an internationally recognised standard measure of ground hardness for sports fields. Methodology: The 2.25 kg Clegg Soil Impact Test and a pair of 12 cm soil moisture probes were used to measure ground hardness and percentage moisture content. Five football fields were surveyed at 13 prescribed sites just before seven football matches from October 2008 to January 2009 (an FC Women’s WLeague team). Weather conditions recorded at the nearest weather station were obtained from the Bureau of Meteorology website and total rainfall less evaporation was calculated for 7 and 28 days prior to each match. All non-contact injuries occurring during match play and their location on the field were recorded. Results/conclusions: Ground hardness varied between CSIT 5 and 17 (x10G) (8 is considered a good value for sports fields). Variations within fields were typically greatest in the centre and goal areas. Soil moisture ranged from 3 to 40% with some fields requiring twice the moisture content of others to maintain similar CSIT values. There was a non-linear, negative relationship for ground hardness versus moisture content and a linear relationship with weather (R2, of 0.30 and 0.34, respectively). Three non-contact ACL injuries occurred during the season. Two of these were associated with hard and variable ground conditions.
Resumo:
Measurement of the moisture variation in soils is required for geotechnical design and research because soil properties and behavior can vary as moisture content changes. The neutron probe, which was developed more than 40 years ago, is commonly used to monitor soil moisture variation in the field. This study reports a full-scale field monitoring of soil moisture using a neutron moisture probe for a period of more than 2 years in the Melbourne (Australia) region. On the basis of soil types available in the Melbourne region, 23 sites were chosen for moisture monitoring down to a depth of 1500 mm. The field calibration method was used to develop correlations relating the volumetric moisture content and neutron counts. Observed results showed that the deepest “wetting front” during the wet season was limited to the top 800 to 1000 mm of soil whilst the top soil layer down to about 550mmresponded almost immediately to the rainfall events. At greater depths (550 to 800mmand below 800 mm), the moisture variations were relatively low and displayed predominantly periodic fluctuations. This periodic nature was captured with Fourier analysis to develop a cyclic moisture model on the basis of an analytical solution of a one-dimensional moisture flow equation for homogeneous soils. It is argued that the model developed can be used to predict the soil moisture variations as applicable to buried structures such as pipes.
Resumo:
Ground-penetrating radar (GPR) is widely used for assessment of soil moisture variability in field soils. Because GPR does not measure soil water content directly, it is common practice to use calibration functions that describe its relationship with the soil dielectric properties and textural parameters. However, the large variety of models complicates the selection of the appropriate function. In this article an overview is presented of the different functions available, including volumetric models, empirical functions, effective medium theories, and frequency-specific functions. Using detailed information presented in summary tables, the choice for which calibration function to use can be guided by the soil variables available to the user, the frequency of the GPR equipment, and the desired level of detail of the output. This article can thus serve as a guide for GPR practitioners to obtain soil moisture values and to estimate soil dielectric properties.