934 resultados para small area estimation
Resumo:
A class of composite estimators of small area quantities that exploit spatial (distancerelated)similarity is derived. It is based on a distribution-free model for the areas, but theestimators are aimed to have optimal design-based properties. Composition is applied alsoto estimate some of the global parameters on which the small area estimators depend.It is shown that the commonly adopted assumption of random effects is not necessaryfor exploiting the similarity of the districts (borrowing strength across the districts). Themethods are applied in the estimation of the mean household sizes and the proportions ofsingle-member households in the counties (comarcas) of Catalonia. The simplest version ofthe estimators is more efficient than the established alternatives, even though the extentof spatial similarity is quite modest.
Resumo:
A national survey designed for estimating a specific population quantity is sometimes used for estimation of this quantity also for a small area, such as a province. Budget constraints do not allow a greater sample size for the small area, and so other means of improving estimation have to be devised. We investigate such methods and assess them by a Monte Carlo study. We explore how a complementary survey can be exploited in small area estimation. We use the context of the Spanish Labour Force Survey (EPA) and the Barometer in Spain for our study.
Resumo:
The three articles that comprise this dissertation describe how small area estimation and geographic information systems (GIS) technologies can be integrated to provide useful information about the number of uninsured and where they are located. Comprehensive data about the numbers and characteristics of the uninsured are typically only available from surveys. Utilization and administrative data are poor proxies from which to develop this information. Those who cannot access services are unlikely to be fully captured, either by health care provider utilization data or by state and local administrative data. In the absence of direct measures, a well-developed estimation of the local uninsured count or rate can prove valuable when assessing the unmet health service needs of this population. However, the fact that these are “estimates” increases the chances that results will be rejected or, at best, treated with suspicion. The visual impact and spatial analysis capabilities afforded by geographic information systems (GIS) technology can strengthen the likelihood of acceptance of area estimates by those most likely to benefit from the information, including health planners and policy makers. ^ The first article describes how uninsured estimates are currently being performed in the Houston metropolitan region. It details the synthetic model used to calculate numbers and percentages of uninsured, and how the resulting estimates are integrated into a GIS. The second article compares the estimation method of the first article with one currently used by the Texas State Data Center to estimate numbers of uninsured for all Texas counties. Estimates are developed for census tracts in Harris County, using both models with the same data sets. The results are statistically compared. The third article describes a new, revised synthetic method that is being tested to provide uninsured estimates at sub-county levels for eight counties in the Houston metropolitan area. It is being designed to replicate the same categorical results provided by a current U.S. Census Bureau estimation method. The estimates calculated by this revised model are compared to the most recent U.S. Census Bureau estimates, using the same areas and population categories. ^
Resumo:
Health departments, research institutions, policy-makers, and healthcare providers are often interested in knowing the health status of their clients/constituents. Without the resources, financially or administratively, to go out into the community and conduct health assessments directly, these entities frequently rely on data from population-based surveys to supply the information they need. Unfortunately, these surveys are ill-equipped for the job due to sample size and privacy concerns. Small area estimation (SAE) techniques have excellent potential in such circumstances, but have been underutilized in public health due to lack of awareness and confidence in applying its methods. The goal of this research is to make model-based SAE accessible to a broad readership using clear, example-based learning. Specifically, we applied the principles of multilevel, unit-level SAE to describe the geographic distribution of HPV vaccine coverage among females aged 11-26 in Texas.^ Multilevel (3 level: individual, county, public health region) random-intercept logit models of HPV vaccination (receipt of ≥ 1 dose Gardasil® ) were fit to data from the 2008 Behavioral Risk Factor Surveillance System (outcome and level 1 covariates) and a number of secondary sources (group-level covariates). Sampling weights were scaled (level 1) or constructed (levels 2 & 3), and incorporated at every level. Using the regression coefficients (and standard errors) from the final models, I simulated 10,000 datasets for each regression coefficient from the normal distribution and applied them to the logit model to estimate HPV vaccine coverage in each county and respective demographic subgroup. For simplicity, I only provide coverage estimates (and 95% confidence intervals) for counties.^ County-level coverage among females aged 11-17 varied from 6.8-29.0%. For females aged 18-26, coverage varied from 1.9%-23.8%. Aggregated to the state level, these values translate to indirect state estimates of 15.5% and 11.4%, respectively; both of which fall within the confidence intervals for the direct estimates of HPV vaccine coverage in Texas (Females 11-17: 17.7%, 95% CI: 13.6, 21.9; Females 18-26: 12.0%, 95% CI: 6.2, 17.7).^ Small area estimation has great potential for informing policy, program development and evaluation, and the provision of health services. Harnessing the flexibility of multilevel, unit-level SAE to estimate HPV vaccine coverage among females aged 11-26 in Texas counties, I have provided (1) practical guidance on how to conceptualize and conduct modelbased SAE, (2) a robust framework that can be applied to other health outcomes or geographic levels of aggregation, and (3) HPV vaccine coverage data that may inform the development of health education programs, the provision of health services, the planning of additional research studies, and the creation of local health policies.^
Resumo:
The objective of this thesis is the small area estimation of an economic security indicator. Economic security is a complex concept that carries a variety of meanings. In the literature there is no a formal unambiguous definition for economic security and in this work we refer to the definition recently provided for its opposite, economic insecurity, as the “anxiety produced by the possible exposure to adverse economic events and by the anticipation of the difficulty to recover from them” (Bossert and D’Ambrosio, 2013). In the last decade interest for economic insecurity/security has grown constantly, especially since the financial crisis of 2008, but even more in the last year after the economic consequences due to the Covid-19 pandemic. In this research, economic security is measures through a longitudinal indicator that takes into account the income levels of Italian households, from 2014 to 2016. The target areas are groups of Italian provinces, for which the indicator is estimated using longitudinal data taken from EU-SILC survey. We notice that the sample size is too low to obtain reliable estimates for our target areas. Therefore we resort to some Small Area Estimation strategies to improve the reliability of the results. In particular we consider small area models specified at area level. Besides the basic Fay-Herriot area-level model, we propose to consider some longitudinal extensions, including time-specific random effects following an autoregressive processes of order 1 (AR1) and a moving average of order 1 (MA1). We found that all the small area models used show a significant efficiency gain, especially MA1 model.
Resumo:
Most methods for small-area estimation are based on composite estimators derived from design- or model-based methods. A composite estimator is a linear combination of a direct and an indirect estimator with weights that usually depend on unknown parameters which need to be estimated. Although model-based small-area estimators are usually based on random-effects models, the assumption of fixed effects is at face value more appropriate.Model-based estimators are justified by the assumption of random (interchangeable) area effects; in practice, however, areas are not interchangeable. In the present paper we empirically assess the quality of several small-area estimators in the setting in which the area effects are treated as fixed. We consider two settings: one that draws samples from a theoretical population, and another that draws samples from an empirical population of a labor force register maintained by the National Institute of Social Security (NISS) of Catalonia. We distinguish two types of composite estimators: a) those that use weights that involve area specific estimates of bias and variance; and, b) those that use weights that involve a common variance and a common squared bias estimate for all the areas. We assess their precision and discuss alternatives to optimizing composite estimation in applications.
Resumo:
In this article we propose using small area estimators to improve the estimatesof both the small and large area parameters. When the objective is to estimateparameters at both levels accurately, optimality is achieved by a mixed sampledesign of fixed and proportional allocations. In the mixed sample design, oncea sample size has been determined, one fraction of it is distributedproportionally among the different small areas while the rest is evenlydistributed among them. We use Monte Carlo simulations to assess theperformance of the direct estimator and two composite covariant-freesmall area estimators, for different sample sizes and different sampledistributions. Performance is measured in terms of Mean Squared Errors(MSE) of both small and large area parameters. It is found that the adoptionof small area composite estimators open the possibility of 1) reducingsample size when precision is given, or 2) improving precision for a givensample size.
Resumo:
Abstract
Resumo:
The paper presents a framework for small area population estimation that enables users to select a method that is fit for the purpose. The adjustments to input data that are needed before use are outlined, with emphasis on developing consistent time series of inputs. We show how geographical harmonization of small areas, which is crucial to comparisons over time, can be achieved. For two study regions, the East of England and Yorkshire and the Humber, the differences in output and consequences of adopting different methods are illustrated. The paper concludes with a discussion of how data, on stream since 1998, might be included in future small area estimates.
Resumo:
This paper presents a small-area CMOS current-steering segmented digital-to-analog converter (DAC) design intended for RF transmitters in 2.45 GHz Bluetooth applications. The current-source design strategy is based on an iterative scheme whose variables are adjusted in a simple way, minimizing the area and the power consumption, and meeting the design specifications. A theoretical analysis of static-dynamic requirements and a new layout strategy to attain a small-area current-steering DAC are included. The DAC was designed and implemented in 0.35 mu m CMOS technology, requiring an active area of just 200 mu m x 200 mu m. Experimental results, with a full-scale output current of 700 mu A and a 3.3 V power supply, showed a spurious-free dynamic range of 58 dB for a 1 MHz output sine wave and sampling frequency of 50 MHz, with differential and integral nonlinearity of 0.3 and 0.37 LSB, respectively.
Resumo:
Small area health statistics has assumed increasing importance as the focus of population and public health moves to a more individualised approach of smaller area populations. Small populations and low event occurrence produce difficulties in interpretation and require appropriate statistical methods, including for age adjustment. There are also statistical questions related to multiple comparisons. Privacy and confidentiality issues include the possibility of revealing information on individuals or health care providers by fine cross-tabulations. Interpretation of small area population differences in health status requires consideration of migrant and Indigenous composition, socio-economic status and rural-urban geography before assessment of the effects of physical environmental exposure and services and interventions. Burden of disease studies produce a single measure for morbidity and mortality - disability adjusted life year (DALY) - which is the sum of the years of life lost (YLL) from premature mortality and the years lived with disability (YLD) for particular diseases (or all conditions). Calculation of YLD requires estimates of disease incidence (and complications) and duration, and weighting by severity. These procedures often mean problematic assumptions, as does future discounting and age weighting of both YLL and YLD. Evaluation of the Victorian small area population disease burden study presents important cross-disciplinary challenges as it relies heavily on synthetic approaches of demography and economics rather than on the empirical methods of epidemiology. Both empirical and synthetic methods are used to compute small area mortality and morbidity, disease burden, and then attribution to risk factors. Readers need to examine the methodology and assumptions carefully before accepting the results.
Resumo:
In this briefing we compare and contrast different small areas, particularly in the context of their use for examining health inequalities.
Resumo:
Background Intra-urban inequalities in mortality have been infrequently analysed in European contexts. The aim of the present study was to analyse patterns of cancer mortality and their relationship with socioeconomic deprivation in small areas in 11 Spanish cities. Methods It is a cross-sectional ecological design using mortality data (years 1996-2003). Units of analysis were the census tracts. A deprivation index was calculated for each census tract. In order to control the variability in estimating the risk of dying we used Bayesian models. We present the RR of the census tract with the highest deprivation vs. the census tract with the lowest deprivation. Results In the case of men, socioeconomic inequalities are observed in total cancer mortality in all cities, except in Castellon, Cordoba and Vigo, while Barcelona (RR = 1.53 95%CI 1.42-1.67), Madrid (RR = 1.57 95%CI 1.49-1.65) and Seville (RR = 1.53 95%CI 1.36-1.74) present the greatest inequalities. In general Barcelona and Madrid, present inequalities for most types of cancer. Among women for total cancer mortality, inequalities have only been found in Barcelona and Zaragoza. The excess number of cancer deaths due to socioeconomic deprivation was 16,413 for men and 1,142 for women. Conclusion This study has analysed inequalities in cancer mortality in small areas of cities in Spain, not only relating this mortality with socioeconomic deprivation, but also calculating the excess mortality which may be attributed to such deprivation. This knowledge is particularly useful to determine which geographical areas in each city need intersectorial policies in order to promote a healthy environment.