998 resultados para silver electrode


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple, precise, rapid and low-cost potentiometric method for saccharin determination in commercial artificial sweeteners is proposed. Saccharin present in several samples of artificial sweeteners is potentiometrically titrated with silver nitrate solution using a silver wire as the indicator electrode, coupled to a titroprocessor. The best pH range was from 3.0 to 3.5 and the detection limit of sodium saccharin was 2.5 mg/ml. Substances normally found along with saccharin in several commercial artificial sweeteners such as maltodextrin, glucose, sucrose, fructose, aspartame, cyclamate, caffeine, sorbitol, lactose, nitrate, methyl- and n-propyl-p-hydroxybenzoate, benzoic, citric and ascorbic acids do not interfere even in significant amounts (e.g. 20 excess relative to saccharin). Chloride ion interferes when present in concentrations larger than 10 mg l(-1); this interference is eliminated with previous extraction of the sweetener from the aqueous medium with ethyl acetate. The results obtained by applying the proposed method compared very favorably with those given by the HPLC method recommended by the FDA. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electrochemical and electrocatalytic behaviour of silver nanoprisms, nanospheres and nanocubes of comparable size in an alkaline medium have been investigated to ascertain the shape dependent behaviour of silver nanoparticles, which are an extensively studied nanomaterial. The nanomaterials were synthesised using chemical methods and characterised with UV-visible spectroscopy, transmission electron microscopy and X-ray diffraction. The nanomaterials were immobilised on a substrate glassy carbon electrode and characterised by cyclic voltammetry for their surface oxide electrochemistry. The electrocatalytic oxidation of hydrazine and formaldehyde and the reduction of hydrogen peroxide were studied by performing cyclic voltammetric and chronoamperometric experiments for both the nanomaterials and a smooth polycrystalline macrosized silver electrode. In all cases the nanomaterials showed enhanced electrocatalytic activity over the macro-silver electrode. Significantly, the silver nanoprisms that are rich in hcp lamellar defects showed greater activity than nanospheres and nanocubes for all reactions studied.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work a simple approach to the creation of highly dispersed electrocatalytically active silver microstructured dendrites on indium tin oxide in the absence of any surface modification or surfactant is presented. It is found that the addition of low concentrations of supporting electrolyte to the AgNO3 solution dramatically influences the morphology of electrodeposited silver which is independent of both the anion and the cation employed. The silver dendrites are characterized by SEM, XRD, XPS as well as by cyclic voltammetry under alkaline conditions. It is found that the surface oxide formation and removal processes are significantly influenced by the microstructured morphology of the silver electrodeposits compared to a smooth macrosized silver electrode. The facile formation of dendritic silver microstructures is also shown to be beneficial for the electrocatalytic oxidation of both formaldehyde and hydrazine and oxygen reduction. The formation of a continuous film of dendritic silver is also investigated for its SERS activity where the connectivity between the individual dendrites is found to be particularly important.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Adsorption of 4,4'-thiobisbenzenethiol (4,4'-TBBT) on a colloidal silver surface and a roughened silver electrode surface was investigated by means of surface-enhanced Raman scattering (SERS) for the first time, which indicates that 4,4'-TBBT is chemisorbed on the colloidal silver surface as dithiolates by losing two H-atoms of the S-H bond, while as monothiolates on the roughened silver electrode. The different orientations of the molecules on both silver surfaces indicate the different adsorption behaviors of 4,4'-TBBT in the two systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is found that Ply adsorbed roughed silver electrode, it is easy to immobilize MP-11 with the electrostatic interaction and to prepare the MP-11/Ply/Ag modified electrode. The preparation method of the modified electrode is simple. In addition, the modified electrode obtained shows the high and stable electrocatalytic activity for O-2 reduction. It is also found that when the sixth coordination of heme in MP-11 is replaced with other coordination species with stronger coordination ability, such as imidazole, its formal redox potential shifts to the negative direction and the electrocatalytic activity for O-2 reduction is reduced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The photoelectrocatalytic effect for the reduction of CO2 mediated with methylviologen (MV) was studied at mercury, polished silver and roughened silver electrodes using electrochemical and surface-enhanced Raman scattering (SERS) techniques. A large photoelectrocatalytic effect for the reduction of CO2 in the presence of MV was observed at the roughened silver electrode, whereas there was only a very small photoelectrocatalytic current at a more negative potential on mercury and polished silver electrodes. The SERS spectra of MV in the presence and absence of CO2, along with the electrochemical results, demonstrate that the surface adsorbed complexes, MV+ -Ag and MV0-Ag, played a role as the mediator for photoinduced electron transfer to CO2 in the solution. The results also suggest that the surface plasmon resonance of the nanoscale silver particle contributes to the overall photoelectrocatalytic effect on a roughened silver electrode.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It was found that microperoxidase-ll (MP-II) can undergo photoreduction at the bale roughened silver electrode. No photoreduction happens at the roughened silver electrode modified with mercaptoundecanoic carboxylic acid/poly-lysine. The photoreduction mechanism is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Photoelectrochemical reduction of nitrite and nitrate was studied on the surface of an electrochemically roughened silver electrode. The dependence of the photocurrent on photon energy, applied potential, and concentration of nitrite was determined. It was concluded that the photoelectrochemical reduction proceeds via a photoemission process followed by the capture of hydrated electrons by electron accepters. The excitation of plasmon resonances in nanosize metal structures produced during the roughening procedure resulted in the enhancement of the photoemission process. Ammonia was detected as one of the final products in this reaction. Mechanisms for the photoelectrochemical reduction of nitrite and nitrate are proposed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

N-Methyl-N'-hexadecylviologen (C16MV) has been the subject of several electrochemical and spectroelectrochemical studies which characterized the species present in various redox states for C16MV monolayers on silver electrode surfaces. Both self-assembled monolayers (SA) and Langmuir-Blodgett (LB) transferred systems have been studied. These indicated inconsistencies regarding the presence or absence of splitting of the first reduction peak in its cyclic voltammogram (CV). The present study demonstrates the important influence of the specific anionic species present in the supporting electrolyte. Splitting may or may not take place, depending on the size and relative strength of the adsorption of specific anions contributed by the supporting electrolyte. Small, strongly adsorbing anions such as iodide produced peak splitting in the CV of C16MV monolayers; bulky but weakly adsorbing anions such as perchlorate may disrupt the ordered structure of monolayers but produce no splitting. Ancillary data provided by surface enhanced Raman spectroscopy (SERS) was consistent with the electrochemical measurements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electronic properties of CN adsorbed on Ag electrodes at different potentials have been studied by using the method of self-consistent-charge discrete variational Xa (SCC-DV-Xa) cluster calculations. It is shown that the binding of NCAg is dominated by both electrostatic and polarization effects derived from the charge of CN, and that the transfer of s charge from CN to silver is the largest donation contribution. The electrode potential influences this charge transfer process and the interaction between CN adsorbate and silver electrode. The results of quantum chemistry calculations fit well with the experimental data of in situ spectroscopic studies on the CN/Ag electrode systems. © 1991.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple and cheap procedure for flexible electronics fabrication was demonstrated by imprinting metallic nanoparticles (NPs) on flexible substrates. Silver NPs with an average diameter of 10 nm were prepared via an improved chemical approach and Ag Np ink was produced in α-terpineol with a concentration up to 15%. Silver micro/nanostructures with a dimension varying from nanometres to microns were produced on a flexible substrate (polyimide) by imprinting the as-prepared silver ink. The fine fluidic properties of an Ag NP/α-terpineol solution and low melting temperatures of silver nanoparticles render a low pressure and low temperature procedure, which is well suited for flexible electronics fabrication. The effects of sintering and mechanical bending on the conductivity of imprinted silver contacts were also investigated. Large area organic field effect transistors (OFET) on flexible substrates were fabricated using an imprinted silver electrode and semiconducting polymer. The OFET with silver electrodes imprinted from our prepared oleic acid stabilized Ag nanoparticle ink show an ideal ohmic contact; therefore, the OFET exhibit high performance (Ion/Ioff ratio: 1 × 103; mobility: 0.071 cm2 V-1 s-1). © 2010 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A useful method for the fabrication of three-dimensional gold nanowire networks based on the chemical reduction of HAuCl4 with trisodium citrate was presented. The coverage of the 3D gold nanowire networks was tunable by altering precursor concentration. The as-prepared 3D gold nanowire networks could be used as surface-enhanced Raman scattering (SERS) substrates and examined by 4-aminothiophenol (4-ATP) as a probe molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An effective and facile method for the fabrication of a surface-enhanced Raman scattering (SERS)-active film with closely packed gold nanoparticle (AuNP) arrays is proposed by self-assembly of different sizes ( 16, 25, 40 and 70 nm) of AuNPs at a toluene/water interface with ethanol as the inducer. The as-prepared AuNP arrays exhibit efficient Raman scattering enhancement, and the enhancement factors estimated using p-aminothiophenol as a probe molecule range from 10(5) to 10(7).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An effective and facile method for fabrication of large area of aggregated gold nanorods (AuNRs) film was proposed by self-assembly of AuNRs at a toluene/water interface for the first time. It was found that large area of aggregated AuNRs film could be formed at the interface of toluene and water due to the interfacial tension between the two phases. The obtained large area of aggregated AuNRs film exhibits strong surface-enhanced Raman scattering (SERS) activity with 4-aminothiophenol (4-ATP) and 2-aminothiophenol (2-ATP) as the probe molecules based on the strong electromagnetic coupling effect between the very adjacent AuNRs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, surface enhanced Raman scattering (SERS) of different concentrations of brilliant green (13G) on Ag nanoparticles (AgNPs) has been investigated. The results indicate that only 10(-12) M BG can be detected on AgNPs while as low as 10(-11) M BG can be detected upon the activation of AgNPs by chloride ions. The additional improvement of the detection of BG mainly derives from the increase of the electromagnetic field around AgNPs and partially from the reorientation of BG on AgNPs induced by chloride ions, which was proved by the different spectra feature in the two systems. Adsorption of BG on AgNPs has also been demonstrated in applications of living cells as optical probes based on SERS, indicating that dye-AgNPs can probe the local environment in the living cells. The related cytotoxicity measurements demonstrated that BG-AgNPs produced little cytotoxicity to the cells, which shows great potential in biornedical applications of BG labeled-AgNPs for SERS nanosensors in cells as optical probes. Meanwhile, SERS spectra of BG on AgNPs in the presence chloride ions are expected to be used in living cells as more sensitive optical probes.