949 resultados para silicon solar cells
Resumo:
The theoretical and experimental open-circuit voltage optimizations of a simple fabrication process of silicon solar cells n(+)p with rear passivation are presented. The theoretical results were obtained by using an in-house developed program, including the light trapping effect and metal-grid optimization. On the other hand, the experimental steps were monitored by the photoconductive decay technique. The starting materials presented thickness of about 300 pm and resistivities: FZ (0.5 Omega cm), Cz-type 1 (2.5 Omega cm) and Cz-type 2 (3.3 Omega cm). The Gaussian profile emitters were optimized with sheet resistance between 55 Omega/sq and 100 Omega/sq, and approximately 2.0 mu m thickness in accordance to the theoretical results. Excellent implied open-circuit voltages of 670.8 mV, 652.5 mV and 662.6 mV, for FZ, Cz-type 1 and Cz-type 2 silicon wafers, respectively, could be associated to the measured lifetimes that represents solar cell efficiency up to 20% if a low cost anti-reflection coating system, composed by random pyramids and SiO(2) layer, is considered even for typical Cz silicon. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Microcrystalline silicon is a two-phase material. Its composition can be interpreted as a series of grains of crystalline silicon imbedded in an amorphous silicon tissue, with a high concentration of dangling bonds in the transition regions. In this paper, results for the transport properties of a mu c-Si:H p-i-n junction obtained by means of two-dimensional numerical simulation are reported. The role played by the boundary regions between the crystalline grains and the amorphous matrix is taken into account and these regions are treated similar to a heterojunction interface. The device is analysed under AM1.5 illumination and the paper outlines the influence of the local electric field at the grain boundary transition regions on the internal electric configuration of the device and on the transport mechanism within the mu c-Si:H intrinsic layer.
Resumo:
Nowadays, one of the most important challenges to enhance the efficiency of thin film silicon solar cells is to increase the short circuit intensity by means of optical confinement methods, such as textured back-reflector structures. In this work, two possible textured structures to be used as back reflectors for n-i-p solar cells have been optically analyzed and compared to a smooth one by using a system which is able to measure the angular distribution function (ADF) of the scattered light in a wide spectral range (350-1000 nm). The accurate analysis of the ADF data corresponding to the reflector structures and to the μc-Si:H films deposited onto them allows the optical losses due to the reflector absorption and its effectiveness in increasing light absorption in the μc-Si:H layer, mainly at long wavelengths, to be quantified.
Resumo:
Light confinement strategies in thin-film silicon solar cells play a crucial role in the performance of the devices. In this work, the possible use of Ag-coated stamped polymers as reflectors to be used in n-i-p solar cells is studied. Different random roughnesses (nanometer and micrometer size) have been transferred on poly(methylmethacrylate) (PMMA) by hot embossing. Morphological and optical analyses of masters, stamped polymers and reflectors have been carried out evidencing a positive surface transference on the polymer and the viability of a further application in solar cells.
Resumo:
Hot-Wire Chemical Vapor Deposition has led to microcrystalline silicon solar cell efficiencies similar to those obtained with Plasma Enhanced CVD. The light-induced degradation behavior of microcrystalline silicon solar cells critically depends on the properties of their active layer. In the regime close to the transition to amorphous growth (around 60% of amorphous volume fraction), cells incorporating an intrinsic layer with slightly higher crystalline fraction and [220] preferential orientation are stable after more than 7000 h of AM1.5 light soaking. On the contrary, solar cells whose intrinsic layer has a slightly lower crystalline fraction and random or [111] preferential orientation exhibit clear light-induced degradation effects. A revision of the efficiencies of Hot-Wire deposited microcrystalline silicon solar cells is presented and the potential efficiency of this technology is also evaluated.
Resumo:
A Simple way to improve solar cell efficiency is to enhance the absorption of light and reduce the shading losses. One of the main objectives for the photovoltaic roadmap is the reduction of metalized area on the front side of solar cell by fin lines. Industrial solar cell production uses screen-printing of metal pastes with a limit in line width of 70-80 μm. This paper will show a combination of the technique of laser grooved buried contact (LGBC) and Screen-printing is able to improve in fine lines and higher aspect ratio. Laser grooving is a technique to bury the contact into the surface of silicon wafer. Metallization is normally done with electroless or electrolytic plating method, which a high cost. To decrease the relative cost, more complex manufacturing process was needed, therefore in this project the standard process of buried contact solar cells has been optimized in order to gain a laser grooved buried contact solar cell concept with less processing steps. The laser scribing process is set at the first step on raw mono-crystalline silicon wafer. And then the texturing etch; phosphorus diffusion and SiNx passivation process was needed once. While simultaneously optimizing the laser scribing process did to get better results on screen-printing process with fewer difficulties to fill the laser groove. This project has been done to make the whole production of buried contact solar cell with fewer steps and could present a cost effective opportunity to solar cell industries.
Resumo:
In the Laser-Fired Contact (LFC) process, a laser beam fires a metallic layer through a dielectric passivating layer into the silicon wafer to form an electrical contact with the silicon bulk [1]. This laser technique is an interesting alternative for the fabrication of both laboratory and industrial scale high efficiency passivated emitter and rear cell (PERC). One of the principal characteristics of this promising technique is the capability to reduce the recombination losses at the rear surface in crystalline silicon solar cells. Therefore, it is crucial to optimize LFC because this process is one of the most promising concepts to produce rear side point contacts at process speeds compatible with the final industrial application. In that sense, this work investigates the optimization of LFC processing to improve the back contact in silicon solar cells using fully commercial solid state lasers with pulse width in the ns range, thus studying the influence of the wavelength using the three first harmonics (corresponding to wavelengths of 1064 nm, 532 nm and 355 nm). Previous studies of our group focused their attention in other processing parameters as laser fluence, number of pulses, passivating material [2, 3] thickness of the rear metallic contact [4], etc. In addition, the present work completes the parametric optimization by assessing the influence of the laser wavelength on the contact property. In particular we report results on the morphology and electrical behaviour of samples specifically designed to assess the quality of the process. In order to study the influence of the laser wavelength on the contact feature we used as figure of merit the specific contact resistance. In all processes the best results have been obtained using green (532 nm) and UV (355 nm), with excellent values for this magnitude far below 1 mΩcm2.
Resumo:
Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III?V materials on silicon for photovoltaic applications. When manufacturing a multi-junction solar cell on silicon, one of the first processes to be addressed is the development of the bottom subcell and, in particular, the formation of its emitter. In this study, we analyze, both experimentally and by simulations, the formation of the emitter as a result of phosphorus diffusion that takes place during the first stages of the epitaxial growth of the solar cell. Different conditions for the Metal-Organic Vapor Phase Epitaxy (MOVPE) process have been evaluated to understand the impact of each parameter, namely, temperature, phosphine partial pressure, time exposure and memory effects in the final diffusion profiles obtained. A model based on SSupremIV process simulator has been developed and validated against experimental profiles measured by ECV and SIMS to calculate P diffusion profiles in silicon formed in a MOVPE environment taking in consideration all these factors.
Resumo:
Light trapping is becoming of increasing importance in crystalline silicon solar cells as thinner wafers are used to reduce costs. In this work, we report on light trapping by rear-side diffraction gratings produced by nano-imprint lithography using interference lithography as the mastering technology. Gratings fabricated on crystalline silicon wafers are shown to provide significant absorption enhancements. Through a combination of optical measurement and simulation, it is shown that the crossed grating provides better absorption enhancement than the linear grating, and that the parasitic reflector absorption is reduced by planarizing the rear reflector, leading to an increase in the useful absorption in the silicon. Finally, electro-optical simulations are performed of solar cells employing the fabricated grating structures to estimate efficiency enhancement potential.